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Abstract—Prediction of vehicle lane change maneuvers has
gained a lot of momentum in the last few years. Some recent
works focus on predicting a vehicle’s intention by predicting its
trajectory first. This is not enough, as it ignores the context
of the scene and the state of the surrounding vehicles (as they
might be risky to the target vehicle). Other works assessed the
risk made by the surrounding vehicles only by considering their
existence around the target vehicle, or by considering the distance
and relative velocities between them and the target vehicle as
two separate numerical features. In this work, we propose a
solution that leverages Knowledge Graphs (KGs) to anticipate
lane changes based on linguistic contextual information in a
way that goes well beyond the capabilities of current perception
systems. Our solution takes the Time To Collision (TTC) with
surrounding vehicles as input to assess the risk on the target
vehicle. Moreover, our KG is trained on the HighD dataset using
the TransE model to obtain the Knowledge Graph Embeddings
(KGE). Then, we apply Bayesian inference on top of the KG using
the embeddings learned during training. Finally, the model can
predict lane changes two seconds ahead with 97.95% f1-score,
which surpassed the state of the art, and three seconds before
changing lanes with 93.60% f1-score.

Index Terms—Lane Change Prediction, Knowledge Graph
Embeddings, Bayesian Inference, Bayesian Reasoning

I. INTRODUCTION

ACCIDENTS occur every day in our daily lives, and the
number of deaths due to vehicle crashes is increasing

every year. Based on statistics published in 2023 by the
National Highway Traffic Safety Administration (NHTSA),
the number of deaths in motor vehicle traffic crashes in the
United States of America (USA) in 2021 is 42000. Which is
a 10% increase in the number of deaths compared to 2020,
and a 17.3% increase compared to 2019 [1]. Lane-changing
maneuvers are one of the causes of vehicle crashes, as a
report indicated that 33% of all road crashes happen due to
the existence of a vehicle that changes its lane. Also, the
NHTSA indicated the fact that 94% of vehicle crashes are
the driver’s fault [2]. That’s why the government put some
constraints on the road and the driver, like wearing seat belts
and being committed to the road speed limit. Also, researchers
started to focus on implementing different models to predict
the vehicle lane-changing intention to reduce the number of
accidents/crashes on the road.

Most of the recently proposed models are based on target
vehicle trajectory data and certain relative measurements with
the surrounding vehicles (e.g. relative distances and velocities).

Figure 1. Target (white) vehicle will make left lane-changing maneuver based
on the risk assessment of the surrounding (green) vehicles.

Furthermore, these models are based on numerical input
values, which makes them act like a black box. This makes
reasoning and interpreting the model outputs difficult. also, it
is challenging to explain the model and its outputs to others
who may not be familiar with the underlying algorithms. So,
this work focuses on addressing the following points:

1) Lane change prediction is carried out based on contex-
tual information, not merely using kinematic information
learned from previous experiences. This goes beyond the
capabilities of current perception systems and allows to
generalize and make predictions agnostic to the physical
aspect of the road environment.

2) Predictions are based on knowledge graphs and, con-
sequently, they are interpretable and explainable, con-
tributing to developing trustworthy systems.

3) Bayesian inference is carried out as a downstream task
on the grounds of the learned embeddings, allowing the
implementation of a fully inductive reasoning system
based on KGEs.

The inputs that are fed to the model can describe the risk
situation around the target vehicle in a linguistic manner so ev-
eryone can understand and reason why the target vehicle took
a certain maneuver. For example, Figure 1 shows a scenario of
a white target vehicle that will make a left lane change because
there is high-risk TTC with the preceding vehicle (P) and high-
risk TTC with the right following vehicle (RF) as well. Still,
there is low-risk TTC with the left following vehicle (LF).
So, the target vehicle will avoid lane keeping or right lane
changing in order to avoid collisions/risks with the preceding
vehicle or the right following vehicle, respectively. Instead, the
target vehicle will execute the left lane changing maneuver.

The rest of this article is organized as follows. section II
presents the state of the art. section III contains a brief
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introduction to the Highway Drone (HighD) dataset and
Knowledge Graphs (KGs). Then, our proposed methodology
will be discussed in detail in section IV. In section V, results
will be presented. Finally, section VI concludes the work and
provides some recommended future work.

II. STATE OF THE ART

Recently, different works have focused on predicting vehicle
lane changes using different inputs (including target vehi-
cle position, speed, acceleration, and surrounding vehicles’
states) and methods (like rule-based algorithms and data-
driven models). Rule-based algorithms define certain rules
at which the vehicle makes a lane change, such as the gap
acceptance model, which assumes that the vehicle will make
a lane change when it achieves the least possible distance
between it and the front/rear vehicles in the same lane as
in [3]. Data-driven models are based on training a model
on certain inputs to obtain a certain complex equation that
maps these inputs to a certain output. The models can be
some traditional machine learning models like Support Vector
Machine (SVM) and logistic regression, or deep learning
models like Artificial Neural Networks (ANN) and Recurrent
Neural Networks (RNN) with all its variations.

In 2017, authors in [4] used SVM and artificial potential
field models to detect lane changes for vehicles based on pre-
dicting their trajectories using the Next-Generation Simulation
(NGSIM) dataset. They also used the predicted trajectories to
consider the possibility of a crash with an adjacent vehicle
to reduce false alarms. The inputs are the distance from the
centerline, the lateral velocity, and the potential feature. The
output is whether the vehicle will change lanes or keep lanes.
The work concluded that most zigzag driving cases are origi-
nally lane-changing maneuvers. However, these maneuvers are
canceled due to the presence of a vehicle in the adjacent lane.

In 2018, [5] utilized a Long Short-Term Memory (LSTM)
model to predict vehicle lane changes by considering the
vehicle’s past trajectory and neighbors’ states. The models take
different inputs extracted from the NGSIM dataset. The inputs
were the vehicle’s lateral and longitudinal global positions
with respect to the lane, the vehicle’s acceleration, the exis-
tence of right/left lane vehicles, and the longitudinal distance
between the target vehicle and (front/rear)(left, center, right)
surrounding vehicles.

Work [6] in 2019 utilized two machine learning models to
predict lane changes of surrounding vehicles on highways.
The inputs were extracted from the NGSIM dataset. The
inputs were longitudinal/lateral velocities, longitudinal/lateral
accelerations, distance to left/right lane markings, yaw angle,
and yaw rate related to the road. These inputs were trained
and tested on SVM and ANN models.

In 2019, authors in [7] predicted lane-changing intentions
of surrounding vehicles using two different methodologies and
by only using visual information provided by the PREVEN-
TION dataset. The first method was Motion History Image -
Convolutional Neural Network (MHI-CNN), where temporal
and visual information was obtained from the MHI, and then
fed to the CNN model. The second model was the GoogleNet-
LSTM model, in which a feature vector was obtained from a

GoogleNet CNN model and then fed to the LSTM model to
learn temporal patterns. The used inputs were the RGB image,
center (X, Y), and the bounding box’s dimensions (W, H). The
results showed that the GoogleNet-LSTM model outperformed
the MHI-CNN model.

In 2020, [8] trained LSTM and RNN models on the
PREVENTION dataset to predict surrounding vehicles’ lane-
changing intentions by tracking the vehicles’ positions (cen-
troid of the bounding box). Sequences of 10, 20, 30, 40, and
50 frames of (X, Y) coordinates of the target vehicle were
considered for comparison. It was concluded that RNN models
performed better on short sequence lengths and the LSTM
model outperformed RNN at long sequences.

The work implemented in [9] in 2022 utilized eXtreme
Gradient Boosting (XGBoost) and LSTM to predict the vehicle
lane change decision and trajectory prediction, respectively in
scenarios in the HighD dataset. The models were based on the
traffic flow (traffic density) level, the type of vehicle, and the
relative trajectory between the target vehicle and surrounding
vehicles. At first, the traffic flow and vehicle type models
were separately implemented. The traffic flow yt model took
the longitudinal velocity vlon and acceleration alon of the
target vehicle, Headway, and the relative velocity between the
target vehicle and the (left/front/right preceding, and left/right
following vehicles). The vehicle type yv model took all the
inputs stated previously concatenated with the angle between
the target vehicle trajectory and road vertical line φ. Then,
the lane change decision prediction was achieved utilizing the
XGBoost model. The model took the following inputs: vlon,
alon, φ, lateral velocity vlat and acceleration alat of the target
vehicle, Headway and the relative velocity between the target
vehicle and the mentioned five surrounding vehicles, yt, and
yv . Finally, vehicle trajectory prediction occurred based on
historical trajectories and the predicted lane-changing decision.

In 2023, [10] built a dual transformer which contained two
transformer models. One was for lane change prediction, while
the other was for trajectory prediction. The first model used
the target vehicle’s historical lateral trajectory information and
the surrounding vehicles’ states, including the longitudinal
distance and velocity between the target vehicle and (the
left/front/right preceding vehicle and the left/right following
vehicles). The intention prediction output obtained from the
first model was fused with the target vehicle’s historical lateral
trajectory information and fed to the second model to establish
the connection between the intentions and the trajectories. The
dual transformer was trained and validated on the HighD and
NGSIM datasets. Finally, this research assumed that the ego
vehicle sensors can obtain all the information regarding the
position and speed of the target vehicle and all the surrounding
vehicles.

After closely examining the previous literature, the fol-
lowing research gaps can be identified, which are covered
throughout this work.

1) Lane change prediction based on contextual linguistic
information, not only using trajectory numerical infor-
mation learned from previous experiences.

2) Predictions are interpretable and explainable as they are
based on KGs.
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3) Enabling a fully inductive reasoning system using
Bayesian inference built on top of the KGEs.

III. PRELIMINARY

This section briefly introduces the dataset used in this work
(HighD), and the foundation model (KG and KGE) used to
develop the lane change prediction system.

A. HighD Dataset

The HighD dataset [11] is a German dataset that records
naturalistic top-view scenes on German highway roads using
a camera integrated into a quadcopter. The dataset is recorded
in six locations and includes 60 tracks (≈ 15 minutes each)
containing more than 110, 500 vehicles. For each vehicle
in the dataset, much information is provided, including but
not limited to vehicle position, speed, acceleration, TTC
with the preceding (front) vehicle, whether a left/center/right
preceding, left/right side, or left/center/right following (rear)
vehicle exists, and the vehicle’s current lane. The dataset can
be reached through the following link: https://levelxdata.com/
highd-dataset/.

B. Knowledge Graph and Knowledge Graph Embedding

A graph is a type of database that represents complex data
in a structured way, which is human-interpretable and can be
easily observed and analyzed. It stores information in the form
of entities (nodes) and their relationships (edges). Each relation
connects two nodes and acts as the relationship between them.
The relation can be directed (x isFatherOf y) or undirected (x
isFriendWith y, y isFriendWith x).[12]

A knowledge graph is a directed heterogeneous (nodes can
have different types) multigraph (each pair of nodes can be
connected with more than one relation). In the context of KGs,
a triple < s, r, o > consists of subject and object entities con-
nected by a relation. For example, <vehicle, INTENTION IS,
leftLaneChanging>. The subject is vehicle, the relation is
INTENTION IS, and the object is leftLaneChanging.[12]

KGE is a supervised machine learning task that learns to
represent (embed) the knowledge graph entities and relations
into a low-dimensional vector space while preserving semantic
meaning. There are several KGE models, such as DistMult,
TransE, RotatE, ComplEx, and HolE. Each model’s unique
scoring function measures the distance between two entities
using the relation between them. The purpose of the scoring
function is to make entities connected by a relation close to
each other in the vector space, while entities that do not belong
to this relation should be far apart. [12], [13]

IV. METHODOLOGY

A. Architecture Overview

Figure 2 shows the pipeline of our proposed methodology.
The pipeline consists of three phases. Phase one is the lin-
guistic input generation phase, in which the numerical input
variables are converted to linguistic input categories using
some threshold limits. Phase two is the KGE phase in which
the KG will be generated as triples in a CSV file and embedded

(trained) using the Ampligraph library [13]. The third phase
is the Bayesian inference and prediction phase. This phase is
responsible for calculating the probability that a vehicle will
make a LLC, LK, and RLC given the linguistic inputs generated
from phase one. And the highest probability is the model
prediction. The calculation of these probabilities is based on
the formation of triples and the evaluation of these triples using
the embedding obtained from phase two and the Bayesian
reasoning in phase three. The KG ontology and input structure
will be stated in the next section. Then, each of the three
phases is discussed in detail.

B. Knowledge Graph Ontology and Input Definition

The KG ontology is a formal (general) representation of the
entities and their relationships in the KG. In KGs, ontologies
are important because they act as a schema for constructing the
KG so that they can ensure consistency and explainability of
the KG. Also, It is worth mentioning that we apply a number
of reifications on the given inputs to get reified triples.

For example, if the target vehicle has a preceding vehicle,
and the TTC with this preceding vehicle is at high risk,
then, the reified triple is <vehicle, PRECEDING TTC IS,
highRiskPreceding> where vehicle in that triple points to the
target vehicle. Table I shows the ontology for our lane change
prediction KG model. The table shows all the input/output
classes in the first column, a description in the second column,
a set of possible reified linguistic instances (categories) for
each class in the third column, a description of that instance
(if needed) in the fourth column, and the name of the relation
pointing to that class after reification in the fifth column.
Figure 3 shows a KG instance based on the formed ontology.
For example, it can be observed that the generic entity vehicle
has a child with ID 638, and this child has latVelocity class
assigned to movingStraight instance. Also, this child has
highRiskPreceding TTC. 638 intention is LLC.

The same applies to all the entities in the graph for this child
and any other child. Note that the entity vehicle is connected to
all other children, which forms a big KG with many instances
connected to each other through that generic entity as shown
in Figure 4 and Figure 5. Such that Figure 4 contains KGs
for only 10 vehicles, and Figure 5 contains KG instances for
2000 vehicles. It is worth mentioning that the total number of
instances used for training and validation is 39304, which is
hard to fit into one figure.

C. Linguistic Input Generation Phase

The used inputs to the model are vehicle lateral (velocity
and acceleration), TTC to (preceding, left preceding, right
preceding, left following, right following) vehicles. The first
three inputs are directly provided by the dataset. The TTC
inputs for the preceding left and right vehicles are extracted
based on the following equation. That d is the distance
between the two vehicles. The sub-letter p refers to the left
or right preceding vehicle. Given that the distance d and both
velocities are provided by the dataset.

TTC =
dp

vtarget − vp
(1)

https://levelxdata.com/highd-dataset/
https://levelxdata.com/highd-dataset/
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Figure 2. The pipeline for anticipating lane changes consists of three phases: Linguistic Input Generation, Knowledge Graph Embedding, and Bayesian
Inference and Prediction.

Figure 3. One KG instance where every entity (class) is assigned to its unique
instance.

The TTC inputs for the left and right following vehicles are
extracted based on the following equation. The sub-letter f
refers to the left or right following vehicle.

TTC =
df

vf − vtarget
(2)

After extracting all the needed features. All the numerical
data is converted to linguistic ’string’ categories.

The conversion from numerical value to a linguistic category
is done by taking each feature and converting it to a string
based on some threshold limits obtained from statistics and
literature. For example, the latVelocity feature numerical val-
ues (shown in Figure 6) can be separated into three linguistic
categories {movingLeft, movingStraight, movingRight}.

The challenge here is to choose the numerical threshold
limit values that separate the three linguistic categories accu-
rately. These values are obtained based on the normal distri-

Vehicle

Vehicle
ID:4735

rightAcceleration

rightMotion

lowRiskPreceding

lowRiskLeftPreceding

lowRiskRightPreceding

lowRiskLeftFollowing

lowRiskRightFollowing

RLC

Vehicle
ID:31630

zeroAcceleration

leftMotion

mediumRiskLeftFollowing

LLC

Vehicle
ID:32765

Vehicle
ID:30304

straightMotion

highRiskRightPreceding

LK

Vehicle
ID:25726

Vehicle
ID:16903

Vehicle
ID:6968

highRiskLeftFollowing

Vehicle
ID:10846

Vehicle
ID:29829

Vehicle
ID:27043

Figure 4. KG with 10 instances where the vehicle generic entity is connected
to 10 child vehicles.

bution of the data shown in Figure 6. Based on the standard
deviation σ and mean µ for the data of each lane changing
category, the µ ± 2σ values represent the threshold limit of
each linguistic variable. So, in this case, the movingStraight
linguistic variable has a threshold limit [µ − 2σ, µ + 2σ],
movingLeft (−∞, µ− 2σ), and movingRight (µ+ 2σ,∞).

For the lateral acceleration, Figure 7 shows the histogram
of the lateral acceleration numerical values. Based on the data
distribution, the same category separation criteria (as in lateral
velocity) is applied to obtain the lateral acceleration linguistic
categories.

Regarding the TTC variables Figure 8 shows the data
distribution for TTC with the preceding vehicle. It can be
observed that at very low TTC values, there are no vehicles.
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TABLE I
Ontology table which includes the definition of all entities (classes), their instances, and possible relations that can be connected to them.

Class Class Description Instance Instance Description Possible Relation

LLC Left Lane Changing
intention Lane changing intention LK Lane Keeping INTENTION IS

of the vehicle RLC Right Lane Changing

movingLeft –
latVelocity Vehicle lateral velocity movingStraight – LATERAL VELOCITY IS

movingRight –

leftAcceleration –
latAcceleration Vehicle lateral accelera- zeroAcceleration No lateral acceleration LATERAL ACCELERATION IS

tion rightAcceletion –

highRiskPreceding –
ttcPreceding TTC with the preceding mediumRiskPreceding – PRECEDING TTC IS

(front) vehicle lowRiskPreceding –

highRiskLeftPreceding –
ttcLeftPreceding TTC with the left mediumRiskLeftPreceding – LEFT PRECEDING TTC IS

preceding (front) vehicle lowRiskLeftPreceding –

highRiskRightPreceding –
ttcRightPreceding TTC with the right mediumRiskRightPreceding – RIGHT PRECEDING TTC IS

preceding (front) vehicle lowRiskRightPreceding –

highRiskLeftFollowing –
ttcLeftFollowing TTC with the left mediumRiskLeftFollowing – LEFT FOLLOWING TTC IS

following (rear) vehicle lowRiskLeftFollowing –

highRiskRightFollowing –
ttcRightFollowing TTC with the right mediumRiskRightFollowing – RIGHT FOLLOWING TTC IS

following (rear) vehicle lowRiskRightFollowing –

vehicleID Child vehicle ID which
changes every frame vehicle ID number (e.g. ’638’) – HAS CHILD

vehicle Generic entity pointing to
every child vehicle – – Any

Vehicle

Vehicle
ID:4735

rightAcceleration

rightMotion

lowRiskPreceding

lowRiskLeftPreceding

lowRiskRightPreceding

lowRiskLeftFollowing

lowRiskRightFollowing

RLC

Vehicle
ID:31630

zeroAcceleration

leftMotion

mediumRiskLeftFollowing

LLC

Vehicle
ID:32765

Vehicle
ID:30304

straightMotion

highRiskRightPreceding

LK

Vehicle
ID:25726

Vehicle
ID:16903

Vehicle
ID:6968

highRiskLeftFollowing

Vehicle
ID:10846

Vehicle
ID:29829

Vehicle
ID:27043

Vehicle
ID:7870

Vehicle
ID:2559

highRiskPreceding

Vehicle
ID:12859

mediumRiskPreceding

Vehicle
ID:3224

Vehicle
ID:3368

mediumRiskRightPreceding

Vehicle
ID:37650

Vehicle
ID:11243

Vehicle
ID:6074

Vehicle
ID:6419

leftAcceleration

Vehicle
ID:23624

Vehicle
ID:10062

Vehicle
ID:19064

Vehicle
ID:10853

Vehicle
ID:36749

Vehicle
ID:16041

Vehicle
ID:15367

Vehicle
ID:34522

Vehicle
ID:2313

Vehicle
ID:6421

Vehicle
ID:3729

Vehicle
ID:7153

Vehicle
ID:5822

Vehicle
ID:26882

Vehicle
ID:12010

Vehicle
ID:1581

Vehicle
ID:31989

Vehicle
ID:27570

Vehicle
ID:19252

Vehicle
ID:10582

Vehicle
ID:14893

Vehicle
ID:38173

Vehicle
ID:33798

Vehicle
ID:17227

Vehicle
ID:14224

Vehicle
ID:15941

Vehicle
ID:7190

Vehicle
ID:8950

Vehicle
ID:30841Vehicle

ID:14524

Vehicle
ID:1013

Vehicle
ID:11739

Vehicle
ID:30779

Vehicle
ID:18424

Vehicle
ID:31457

Vehicle
ID:34419

Vehicle
ID:36138

Vehicle
ID:10436

Vehicle
ID:26854

Vehicle
ID:35689

Vehicle
ID:32470

Vehicle
ID:18221

Vehicle
ID:27948

Vehicle
ID:14482

Vehicle
ID:8817

mediumRiskLeftPreceding

Vehicle
ID:38281

Vehicle
ID:27309

Vehicle
ID:22902

Vehicle
ID:19472

Vehicle
ID:11638

Vehicle
ID:1148

Vehicle
ID:19737

Vehicle
ID:5560

Vehicle
ID:12827

Vehicle
ID:27186

Vehicle
ID:9903

Vehicle
ID:19183

Vehicle
ID:30435

Vehicle
ID:19785

Vehicle
ID:24279

Vehicle
ID:16519

Vehicle
ID:25835

Vehicle
ID:9299

Vehicle
ID:2495

Vehicle
ID:11096

Vehicle
ID:28891

Vehicle
ID:3276

Vehicle
ID:5276

Vehicle
ID:25946

Vehicle
ID:11285

Vehicle
ID:26186

Vehicle
ID:3679

Vehicle
ID:32050

Vehicle
ID:945

Vehicle
ID:34536

Vehicle
ID:1614

Vehicle
ID:5385

Vehicle
ID:4121

Vehicle
ID:35640

Vehicle
ID:14209

Vehicle
ID:31561

Vehicle
ID:35161

Vehicle
ID:27513

Vehicle
ID:38703

Vehicle
ID:32525

Vehicle
ID:4090

Vehicle
ID:25501

Vehicle
ID:32916

Vehicle
ID:38735

Vehicle
ID:10919

Vehicle
ID:36387

Vehicle
ID:23686

Vehicle
ID:22637

Vehicle
ID:15290

Vehicle
ID:29076

Vehicle
ID:35462

Vehicle
ID:37090

Vehicle
ID:5075

Vehicle
ID:3709

Vehicle
ID:36245

Vehicle
ID:1304

Vehicle
ID:2982

Vehicle
ID:10278

Vehicle
ID:33344

Vehicle
ID:27904

Vehicle
ID:36172

Vehicle
ID:24707

Vehicle
ID:3854

Vehicle
ID:18544

Vehicle
ID:25309

Vehicle
ID:11277

Vehicle
ID:12335

Vehicle
ID:9679

Vehicle
ID:37625

Vehicle
ID:31441

Vehicle
ID:23200

Vehicle
ID:17076

Vehicle
ID:5718

Vehicle
ID:20092

Vehicle
ID:14548

Vehicle
ID:36206

Vehicle
ID:39164

Vehicle
ID:21830

Vehicle
ID:7223

Vehicle
ID:35887

Vehicle
ID:5237

Vehicle
ID:36787

Vehicle
ID:22728

Vehicle
ID:38315

Vehicle
ID:21604

Vehicle
ID:5923

Vehicle
ID:30801

Vehicle
ID:8947

Vehicle
ID:1574

Vehicle
ID:20498

highRiskLeftPreceding

Vehicle
ID:12464

Vehicle
ID:1843

Vehicle
ID:10867

Vehicle
ID:31594

Vehicle
ID:26657

Vehicle
ID:22350

Vehicle
ID:3265

Vehicle
ID:355

Vehicle
ID:38979

Vehicle
ID:23673

Vehicle
ID:8999

Vehicle
ID:17541

Vehicle
ID:16078

Vehicle
ID:16692

Vehicle
ID:10674

Vehicle
ID:1986

Vehicle
ID:19089

Vehicle
ID:19221

Vehicle
ID:9267

Vehicle
ID:8188

Vehicle
ID:22969

Vehicle
ID:29816

Vehicle
ID:25763

Vehicle
ID:15431

Vehicle
ID:27644

Vehicle
ID:27697

Vehicle
ID:14908

Vehicle
ID:35415

Vehicle
ID:3389

Vehicle
ID:26499

Vehicle
ID:23477

Vehicle
ID:7575

Vehicle
ID:23024

Vehicle
ID:25257

Vehicle
ID:32603

Vehicle
ID:12194

Vehicle
ID:31835

Vehicle
ID:2579

Vehicle
ID:31324

Vehicle
ID:38956

Vehicle
ID:34488

Vehicle
ID:26194

Vehicle
ID:4971

Vehicle
ID:10868

Vehicle
ID:15680

Vehicle
ID:30550

Vehicle
ID:29770

Vehicle
ID:33250

Vehicle
ID:36287

Vehicle
ID:30225

Vehicle
ID:19077

Vehicle
ID:28380

Vehicle
ID:7731

Vehicle
ID:13451

Vehicle
ID:6918

Vehicle
ID:27997

Vehicle
ID:37513

Vehicle
ID:5099

Vehicle
ID:24007

Vehicle
ID:18737

Vehicle
ID:18174

highRiskRightFollowing

Vehicle
ID:9751

Vehicle
ID:31859

Vehicle
ID:27818

Vehicle
ID:19599

Vehicle
ID:11362

Vehicle
ID:19169

Vehicle
ID:4433

Vehicle
ID:18411

Vehicle
ID:2362

Vehicle
ID:9939

mediumRiskRightFollowing

Vehicle
ID:25092

Vehicle
ID:18576

Vehicle
ID:28251

Vehicle
ID:10405

Vehicle
ID:2248

Vehicle
ID:26596

Vehicle
ID:29433

Vehicle
ID:20523

Vehicle
ID:12398

Vehicle
ID:16101

Vehicle
ID:14331

Vehicle
ID:11010

Vehicle
ID:8757

Vehicle
ID:2241

Vehicle
ID:20057

Vehicle
ID:14589

Vehicle
ID:2364

Vehicle
ID:25135

Vehicle
ID:34854

Vehicle
ID:7563

Vehicle
ID:31420

Vehicle
ID:13122

Vehicle
ID:19852

Vehicle
ID:4

Vehicle
ID:33827

Vehicle
ID:16300

Vehicle
ID:8280

Vehicle
ID:2287

Vehicle
ID:8360

Vehicle
ID:12112

Vehicle
ID:17406

Vehicle
ID:7393

Vehicle
ID:15153

Vehicle
ID:20913

Vehicle
ID:34091

Vehicle
ID:36709

Vehicle
ID:1453

Vehicle
ID:14887

Vehicle
ID:1863

Vehicle
ID:39299

Vehicle
ID:31122

Vehicle
ID:23374

Vehicle
ID:28665

Vehicle
ID:21573
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Figure 5. Large KG with 2000 instances from a total of 39304 instances.

That is because, at low positive TTC values near zero, the
target vehicle is near and faster than the preceding vehicle,
and there is a high risk of collision while approaching the
preceding vehicle. So, vehicles prefer to avoid that risk. For
negative values near zero, this means that the preceding vehicle
is very near but faster than the target vehicle, and any breaking
action taken by the preceding vehicle will cause a low positive
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Figure 6. Histogram shows the relation between lateral velocity numerical
values and the lane-changing labels.

TTC which might lead to a collision too. So, most vehicles
prefer to be safe and avoid being in a region corresponding
to these values. For the other TTC values in the plot outside
the interval around zero, some vehicles keep lanes or change
lanes to the right. But most vehicles change lanes to the left
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Figure 7. Histogram shows the relation between lateral acceleration numerical
values and the lane-changing labels.

at TTC approximate range of [4, 10] seconds. This interval
is within the range that indicates risk on the target vehicle
while following a preceding vehicle as stated by [14] and
considered in the study conducted by [15]. So, the vehicle
changes lanes to the faster lane, which most probably is
the left lane. Moreover, as shown in the figure, separating
the TTC into categories is hard. Also, [15] indicated that
drivers’ behavior is inconsistent in different situations; there
is no definitive value for TTC threshold limits to enable
classification between safe and unsafe maneuvering situations.
Such that, [14] stated that TTC values can be divided into
three-time segments that show the correlation between the
TTC values and the driver braking behavior which is used in
risk assessment of the situation. TTC values between zero and
four seconds indicate high correlation, TTC values between
four and 16 seconds indicate low correlation, and TTC values
larger than 16 indicate negligible correlation. [14] used TTC
values between 0.5 and 10 seconds to discriminate between
safe and unsafe car-following situations during the study of
improving the TTC formulation. So, in this work, the selected
TTC thresholds for each surrounding vehicle location are
based on the TTC with preceding vehicle values provided
by the mentioned works. Therefore, TTC ∈ [0, 4] is high-
risk, TTC ∈ (4, 10) is medium-risk, and any other positive or
negative TTC value is low-risk.

D. Knowledge Graph Embedding Phase

After the linguistic input generation phase, the KG is formed
in a CSV file in the form of triples. Then, trained using the
Ampligraph library.

1) Knowledge Graph Generation: As mentioned, the KG is
generated in the form of triples in a CSV file. The file contains
three columns and many rows. Each row represents an entity
and its relationship with another entity. The structure of each
row consists of three parts: subject (first column), predicate
(second column), and object (third column). Returning to
the example in Figure 3, the triples CSV file will have the
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Figure 8. Histogram shows the relation between numerical values of TTC
with the preceding vehicle and the lane-changing labels.

following structure. <vehicle, HAS CHILD, 638>, this is the
first row. <638, INTENTION IS, LLC>, this is the second
row. Then, the formation of the triple will go by using the
same procedure with the other nodes. Note that each vehicle
will have a new ID in each frame even if it is the same
vehicle. So, in the next frame, <vehicle, HAS CHILD 639>.
638 and 639 are IDs for the same vehicle, but during triples
and KG generation, they are considered as IDs of two different
vehicles. This graph can be extended to all the indicated seven
inputs and to any number of vehicles by following the same
structure.

2) Knowledge Graph Embedding: After producing the
triples CSV file, Ampligraph 2.0.1 library [13] is used for
KGE. Training/validation and testing data are separated based
on tracks to ensure that the vehicles’ behavior is not overlap-
ping, as vehicles from the same track can have similar behavior
(e.g. track has a right exit at the end of the road). So, The
first 48 (80%) tracks in the dataset are used for training and
validation. The other 12 (20%) tracks are kept for testing. Dif-
ferent numbers of triples are used for validation (500, 1K, 2K,
4K, and 10K). However, they all had the same results during
testing. So, only 2K triples are considered for validation. These
triples are provided by using the train test split no unseen
function provided by the Ampligraph library. The numbers of
triples are 351736, 2000, and 12222 for training, validation,
and testing, respectively. The distribution of the number of
samples for each lane change category after tracks separation
and triple generation is shown in Table II.

TABLE II
Number of samples for each lane change category in training, validation,

and testing sets.

LLC LK RLC

Training 8906 19109 11071

Validation 54 91 73

Testing 261 792 305
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Two scoring models were tested: TransE and ComplEx.
Training parameters are fixed for fair comparison: embedding
size k = 100, five negative triples are generated for each
positive triple where both the subject and the object of
triples are corrupted, Adam optimizer with learning rate =
0.0005, SelfAdversarialLoss, batch size = 10000,
validation burn in = 5, validation freq = 5,
validation batch size = 100. Finally, early stopping criteria
is used to monitor val mrr with the patience of 5 validation
epochs in order to stop training when there is no improvement
in the val mrr.

E. Bayesian Inference and Prediction Phase

After training, the embeddings for every entity will become
available. Our proposed solution is intended to allow for
inductive reasoning. For that purpose, we implement some
reifications in the graph (at the ontology level) and we carry
out Bayesian inference on the learned embeddings.

After obtaining the embeddings, we can compute the proba-
bilities of the reified triples using the KGE evaluation method
provided by the AmpliGraph library. These triples have the
form P (h, r, t), where h is the head (or subject entity), r is
the relation, and t is the tail (or object entity). Based on that,
P (h∥e) (h stands for hypothesis and e stands for evidence) is
computed using Bayes rule as followsEquation 3:

P (h∥e) = P (h)P (e∥h)
P (e)

(3)

where hypothesis h is the event or entity that we want to
predict (lane changing prediction), and evidence e is the
information that we have measured with onboard sensors for
the current frame, which are the inputs given by the HighD
dataset in that case. For example, hypothesis: vehicle lane
changing intention is left, evidence: the vehicle TTC with
the preceding vehicle is risky and the vehicle is accelerating
laterally to the left.

Computation of P (h) takes place by evaluating a single
triple after reification as in this example: (vehicle lane chang-
ing intention is left) can be reified to <vehicle, INTEN-
TION IS, LLC>.
P (e) is computed using the following equation:

P (e) = P (e1)× P (e2)× . . . × P (en) (4)

where each P (ei) can also be computed by reification in
the graph. For example, evidence 1 (e1), which says that
the vehicle TTC with the preceding vehicle is risky, can be
reified as <vehicle, PRECEDING TTC IS, highRiskPreced-
ing>; evidence 2 (e2) which says that vehicle is acceler-
ating laterally to the left can be reified as <vehicle, LAT-
ERAL ACCELERATION IS, leftAcceleration>. All pieces of
evidence are reified following this philosophy.

Regarding the computation of P (e∥h), It can be rewritten
as the following:

P (e∥h) = P (e1 and e2 and . . . and en∥h)
= P (e1|h)× . . . × P (en|h)
= P (e1c)× . . . × P (enc)

(5)

where P (eic) stands for the probability of ei given that the
hypothesis h is true. Also, conditioned pieces of evidence are
reified. For the given example, e1c is: what is the probability of
having a highRiskPreceding vehicle, given that the hypothesis
is that the target vehicle makes LLC. This can be reified
to the triple <highRiskPreceding, INTENTION IS, LLC>. It
means that we take it for granted that the object entity is
a vehicle, and it is for sure changing its lane to the left
lane. In such conditions, the probability that such a vehicle
in such circumstances will have a risky preceding vehicle
will be computed. Same applies to e2c, <leftAcceleration,
INTENTION IS, LLC>. Then, e1c is multiplied by e2c to get
P (e∥h) as in Equation 5. Finally, P (h∥e) can be calculated
using Equation 3 given that all these individual probabilities
are computable from the graph using the embeddings.

V. RESULTS

This section presents the results achieved by our proposed
model. The machine used to carry out this experiment is
a Lenovo Legion laptop with Windows 11, i7-9750H CPU,
32GB of RAM, and NVIDIA GeForce RTX 2070 with Max-
Q Design GPU. The KGE TransE model prediction time is
0.065 seconds/prediction. The whole architecture prediction
time is 0.455 seconds/prediction.

After embedding the KG and utilizing Bayesian reasoning
to get the predictions, the model is tested on the last 12 tracks
in the HighD dataset. Testing started by comparing the f1-
score of the TransE model and the ComplEx model three
seconds before changing lanes. The TransE model has 93.60%
f1-score, and the ComplEx model scores 12% f1-score. So, the
TransE model worked better and all the upcoming experiments
and discussions will be based on using the TransE model.

Testing takes place at different instances before crossing the
lane line starting with 0.5 seconds till four seconds with a step
of 0.5 seconds. Table IV shows the results at one, two, three,
and four seconds. It can be observed that the model maintains
the f1-score percentage over 90% for the first three seconds.
Then, the performance starts to drop till it reaches 66.52% f1-
score four seconds before changing lanes. After that, the model
is compared in terms of f1-score with other literature that used
the HighD dataset; the comparison is shown in Table III. The
table shows that [9], and [10] have an average of 1% score
margin with the proposed model at 0.5 and 1 seconds. Starting
from 1.5 seconds our model still maintains its performance
with approximately the same f1-score and passes both models
as their scores start to decrease. Our model kept the f1-score
higher than 97% for the first 2.5 seconds, higher than 90%
for three seconds, and higher than 80% for 3.5 seconds before
crossing the lane marking.

Figure 9 and Figure 10 shows left lane-changing scenario,
where Figure 9 shows different captures at different instants
for the white target vehicle and its surrounding green neighbors
in that scenario. While Figure 10 shows the numerical values
and linguistic categories of the inputs that are fed to the
KG model for the same scene. The upper sub-figure is for
the lateral velocity, followed by the lateral acceleration, and
then the TTC with left/right following vehicles. After that, the
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TABLE III
Comparison with other models using the f1-score (%) metric.

Prediction time 0.5 Seconds 1 Second 1.5 Seconds 2 Seconds 2.5 Seconds 3 Seconds 3.5 Seconds 4 Seconds

[9] 98.20 97.10 96.61 95.19 − − − −

[10] 99.18 98.98 97.56 91.76 − − − −

Ours 97.72 97.86 98.11 97.95 97.21 93.60 82.77 66.52

a) Frame capture at t = -6 s
(no action yet).

d) Frame capture at t = 0.6 s
(crossed lane marking).

c) Frame capture at t = -1.5 s
(vehicle is merging).

b) Frame capture at t = -4 s
(LLC prediction).

638
638 638 638633

633
633633

636
636

636636

637

Figure 9. Scene explanation through four different frame captures.

TABLE IV
Precision, recall, and f1-score metrics of the predictions obtained from our

proposed model at different instants.

1 Second Precision (%) Recall (%) F1-score (%)

LK 98.33 96.96 97.64

LLC 97.98 97.50 97.74

RLC 97.00 99.42 98.19

Macro avg 97.77 97.96 97.86

2 Seconds Precision (%) Recall (%) F1-score (%)

LK 98.86 96.96 97.95

LLC 97.50 99.15 98.32

RLC 96.52 98.66 97.58

Macro avg 97.66 98.25 97.95

3 Seconds Precision (%) Recall (%) F1-score (%)

LK 92.53 96.96 94.70

LLC 95.71 91.77 93.70

RLC 95.46 89.50 92.38

Macro avg 94.56 92.74 93.60

4 Seconds Precision (%) Recall (%) F1-score (%)

LK 69.63 96.96 81.05

LLC 91.30 46.00 61.16

RLC 88.75 42.39 57.37

Macro avg 83.22 61.78 66.52

TTC with the left/center/right preceding vehicles. Finally, the
last sub-figure is for the prediction probabilities throughout
the scene. The focus here is to show that the model uses
human/machine interpretable and explainable linguistic inputs
to get a reasonable prediction.

The scene starts with Figure 9a at −6 seconds before
changing the lane. By observing the plots in Figure 10, the
target vehicle has zero lateral velocity (movingStraight), zero
lateral acceleration, and low-risk TTC with the left/center/right
preceding and left/right following vehicles. At this moment,
human reasoning says that the vehicle is keeping its lane.

Using Bayesian reasoning, the model is asked to compute the
probability of LLC given the generated linguistic inputs, the
same question is addressed for LK and RLC, and the prediction
with the highest probability will be the model’s prediction. The
model uses the KGE to get all the triples probabilities after
reification as mentioned earlier in section IV and Figure 2.
During this instant, the model prediction is LK as it has a
higher probability than LLC and RLC.

Consider the TTC numerical value with the right following
vehicle in the interval t=[−6,−5], there is a drop of the TTC
value from −10 to zero. This is due to the reason that initially,
the TTC is calculated with respect to a right following vehicle
instead of the one shown in Figure 9a, but after some frames,
the target vehicle completely passes the vehicle in the figure,
and the TTC is now calculated with respect to that vehicle.

Moving on to the second instant which is described in
Figure 9b at −4 seconds before changing lanes. Despite that,
the vehicle’s lateral velocity and acceleration are zero. The
model gives an LLC prediction (represented by a yellow
triangle pointing to the left) because there is a medium-risk
TTC with the preceding vehicle. Moreover, focusing on the
interval t=[−5,−4], it is shown that the right preceding vehicle
TTC risk changed from low to medium, which makes the RLC
probability decrease, causing an increase in the LK and LLC
probabilities.

After that, in the third captured frame represented in Fig-
ure 9c. The target vehicle still has high-risk TTC with the
preceding and right preceding vehicles. And the vehicle starts
to accelerate in the left direction, moving with lateral velocity
in the left direction as well. So, the vehicle started moving
to merge and is about to change lanes. The model LLC
probability increased approximately to 90%.

Then, in the last capture after crossing the lane lines in Fig-
ure 9d. The target vehicle is merging with right acceleration,
left velocity, and high-risk right preceding vehicle. Moreover,
by comparing the locations of the surrounding vehicles with
respect to our target vehicle inFigure 9c and Figure 9d. It can
be observed that the preceding vehicle with high-risk before
changing lanes becomes the right preceding high-risk vehicle
after the left lane changing. Also, the left preceding vehicle
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Figure 10. Temporal sequence of numerical variables and linguistic cate-
gories.

becomes the preceding vehicle. The same applies to all other
target vehicle neighbors which causes a high change in the
TTC values.

Finally, Table V contains links for some multimedia videos
that provide results of different scenes including the scene
discussed in this section.

VI. CONCLUSIONS AND FUTURE WORK

In this work, the problem of vehicle lane change prediction
is addressed using explainable contextual linguistic informa-
tion that describes the target vehicle state and introduces risk
awareness by considering the TTC risk with the surrounding
vehicles. The proposed solution consists of three phases:

TABLE V
Different Multimedia for Better Visualisation.

Scenario Link

Left Lane Change https://youtu.be/jPFj3YstBzs

Left Lane Change https://youtu.be/F7BSMsAyerI

Lane Keeping https://youtu.be/zavuxrzb3KY

Right Lane Change https://youtu.be/7xzeycfmRkc

Right Lane Change https://youtu.be/wLfE8PfAUgU

linguistic input generation, knowledge graph embedding, and
Bayesian inference and prediction. The first phase generates
linguistic input categories from numerical values based on
some threshold limits. The second phase takes the linguistic
inputs and forms a knowledge graph reified triples in the form
of a CSV file and uses the Ampligraph library for knowledge
graph embedding. In the third, the implementation of a fully
inductive reasoning system based on KGEs is carried out using
Bayesian inference. This phase uses the embeddings from
phase two to calculate the probabilities of different reified
triples which are used for Bayesian reasoning to generate the
final prediction. The proposed model is evaluated at different
instants before the target vehicle changes lanes. The results
showed that the model can predict lane-changing intention
two seconds earlier with an f1-score of 97.95%, and three
seconds earlier with an f1-score of 93.60%. This shows the
reliability and robustness of the model to keep the f1-score
higher than 90% for three seconds before changing lanes.
Moreover, the model surpassed other recent works that used
the HighD dataset, especially at two seconds when the other
models’ scores started to decrease and our model kept its high
score without decreasing.
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