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Abstract— Autonomous vehicles navigate in dynamically
changing environments under a wide variety of conditions,
being continuously influenced by surrounding objects. Mod-
elling interactions among agents is essential for accurately
forecasting other agents’ behaviour and achieving safe and
comfortable motion planning. In this work, we propose SCOUT,
a novel Attention-based Graph Neural Network that uses a
flexible and generic representation of the scene as a graph for
modelling interactions, and predicts socially-consistent trajec-
tories of vehicles and Vulnerable Road Users (VRUs) under
mixed traffic conditions. We explore three different attention
mechanisms and test our scheme with both bird-eye-view and
on-vehicle urban data, achieving superior performance than
existing state-of-the-art approaches on InD and ApolloScape
Trajectory benchmarks. Additionally, we evaluate our model’s
flexibility and transferability by testing it under completely new
scenarios on RounD dataset. The importance and influence of
each interaction in the final prediction is explored by means
of Integrated Gradients technique and the visualization of the
attention learned.

I. INTRODUCTION

Predicting traffic participants’ trajectories is of major im-
portance in autonomous driving applications, since it allows
the controller to plan ahead the motion of the vehicle,
avoiding collisions and making better driving decisions. In
this work, we aim at socially-aware and socially-consistent
vehicles and VRUs trajectory forecasting and interaction
understanding. Accurately forecasting the motion of sur-
rounding agents is an extremely complex and challenging
task, considering that many factors can affect the future
trajectory of an object. First of all, the variety and complexity
of road scenes is immense and traffic scene dynamics can be
extremely different among different, or even similar, scenar-
ios. Therefore, one major challenge of developing prediction
methods is to find comprehensive and generic representations
for all common scenarios that can be encountered in the real
world. Moreover, although deep learning based models have
shown incredible forecasting abilities, it would be desirable
to retain structural information and explainability, instead of
relying on the blackbox nature of these models.

Motion forecasting must be socially-aware, i.e. it must
consider the past trajectories and intentions of surrounding
agents. However, one major open question in the field of
motion forecasting is how to model such interactions among
traffic agents. Understanding how the ego-vehicle actions
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Fig. 1: Spatio-temporal graph of an interaction scenario with
5 agents involved. Our approach predicts trajectories using
an attention mechanism in a socially-consistent way.

might influence other actors’ behaviors is essential for safe
and comfortable motion planning of self-driving vehicles.
Additionally, these predictions must be consistent among
vehicles and non-overlapping. This can only be achieved by
deeply understanding the scene dynamics and the essence of
interactions among traffic participants.

On the other side, most deep learning based models used
for trajectory forecasting operate on data of a fixed size
and a fixed spatial organization, which impedes to obtain
a general representation for inputs and outputs such that
they can be flexible to the number and type of agents as
well as transferable under different scenarios. In our work,
we propose to tackle these problems harnessing the power
of graph neural networks by modelling each traffic agent
as a node and possible interactions between them as edges,
obtaining a high-level representation of the traffic scene as a
graph (see Fig. 1). In the light of the above mentioned, our
main contributions can be summarized as follows:
• Socially-aware: we propose SCOUT, a generic graph-

based formulation for modelling traffic interactions,
where the influence of interactions among vehicles is
modelled as an additional element that is dynamically
learnt during the training phase in a semi-supervised
way, following an attention mechanism.
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• Socially-consistent: trajectory forecasts are learnt by
incorporating the overlap of future trajectories as an
element to be minimized during training.

• Flexible and transferable: our model works for a va-
riety of number and type of road agents, while proving
transferability among different scenarios.

• Urban dataset: this work has been evaluated with three
real-world urban datasets, in which numerous interac-
tions between various road agents occur simultaneously.

• Interaction understanding: the exploration of attention
learned by our model sheds light on the interpretation
of the influence of vehicle interactions on the final
prediction.

II. RELATED WORK.

Trajectory prediction has been extensively studied over
the last decades, since it is a key feature for autonomous
driving. This has led to a plethora of competitive models
and algorithms. Recently, deep learning based methods have
emerged for maneuver classification [1] and trajectory pre-
diction [2]. Specially, Recurrent Neural Networks (RNNs)
such as LSTMs have been widely used in the field. However,
most approaches do not take inter-object interactions into
account and are therefore limited.

More recent works have proposed new schemes to explore
this limitation. In earlier works such as SocialLSTM [3] and
Convolutional Social Pooling (CSP) [4], interaction among
smart agents are implicitly modeled by the “social pooling”
operation. In [5], the authors presented a LSTM-CNN hybrid
network which take into account heterogeneous interactions
modelling each road agent with an LSTM. They create an
horizon map by pooling together the agents’ hidden states
and define a neighborhood map. A major drawback of this
scheme is that it requires high computational power. Most
works such as [6] or [7] work with a fixed number of closest
road entities for studying the influence of interactions, which
results in a lack of flexibility.

Graph Neural Networks has recently emerged as a solution
to handle different input sizes and achieve invariance to input
ordering, since it processes strong inductive biases [8], [9].
[6] utilizes a graph to represent the interaction among nearby
agents and uses an encoder-decoder LSTM to make predic-
tions. However they treat each surrounding agent equally by
using a binary adjacency matrix to construct the graph. As
opposed to modeling interaction implicitly, [10] models the
interactions in dynamical systems as latent edge types of
an interaction graph, which are learned in an unsupervised
manner. [11] models the multi-agent interactions with a
Graph Neural Network, where the node features are derived
from the combination of cropped map information and the
upstream features extracted from the sensor data.

Notwithstanding, most of these models are too complex
and lack of explainability due to their black-box nature. We
propose a simplistic model by thinking about traffic agents
and their interactions as nodes and edges in a graph, using
an attention mechanism to extract relevant features encoding

these interactions and a simple feed-forward network as a
behavior prediction model for each node.

III. METHOD

To solve the limitations faced by existing approaches,
we propose SCOUT, a novel deep learning graph-based
model for motion forecasting (see Fig. 2). In this section
we describe our approach and implementation details.

A. Problem Formulation

The goal is to estimate the future position of all road
agents from their past trajectories. Input features X define
observed trajectories over th time steps th ≤ Tobs of all
traffic agents in a scene, where Xt = [Xt

1, . . . , X
t
N ] for N

agents in the scene. Our goal is to forecast future trajectories
Ŷt = [Ŷ t1 , ..., Ŷ

t
N ] for all observed participants over the

predicted horizon Tobs < t ≤ Tpred. The input features
of object i at time t are defined as Xt

i = (xti, y
t
i , σ

t
i),

representing the cartesian coordinates and the heading of
the object at that timestep. During training, the predicted
positions are compared to ground truth future trajectories Y ,
where Y ti = (xti, y

t
i).

B. Graph Construction

1) Feature Representation: The first task to be solved is
to construct the features in such a way that they can be
fed to a graph in an efficient way. Having N agents in the
last observed frame (tobs), we build a 3D matrix of shape
(N,Th, C), where Th is the number of frames in the history
horizon and C the number of input features.

2) Graph Representation: We propose to model inter-
actions among traffic agents through the use of a graph
representation, as researchers have done for social networks.
Being the undirected graph defined as G = {V,E}, each node
Vi in the node set V = {V1, ..., VN} corresponds to a traffic
participant. Vi is defined as Vi = {vti |t = 1, .., th}, being
vti the feature vector of node i at time t. Now the question
at hand is how to construct such graph, i.e. how to define
E. We obtain an adjacency matrix from the last observed
frame tobs. All agents involved in this frame are represented
by a node in the graph and are connected by two types of
edges. First, we connect each agent vi with itself through a
temporal edge eti. Hence, Et = {vti , v

(t+1)
i } represents the

trajectory history of each node over th. Secondly, each node
is connected with all its surrounding agents that fall inside
a radius of 20 meters, the node set D. Therefore, the spatial
edge set is defined as Es = {eij |(vi, vj ∈ D)}. The binary
adjacency matrix will be a symmetric matrix of size (N,N):

A =

{
1 if edge (vti , v

t
j) ∈ D

0 otherwise
(1)

In addition, we evaluate the use of a weighted adjacency
matrix. Considering that a traffic participant is more influ-
enced by close neighbours, we compute the edge weights as
an initial fixed attention score, where closer neighbors are
assigned a higher value. This value is computed by a kernel
function for each edge, which is defined as the inverse of the



Fig. 2: The SCOUT model. Given T timesteps of observed trajectories, we construct the spatio-temporal graph G=(V,E),
where V contains x,y-coordinates, heading and object type of each agent in the scene. Three attention heads aggregates
node’s features that are subsequently forwarded to a second graph attention layer. Finally, the extracted features are fed to
a Feed-Forward layer for the final prediction.

L2 norm of the relative distances (Eq. 2) , with self-loops
set to 1.

A =

{
1

||dti−dtj ||2
if edge (vti , v

t
j) ∈ D

0 otherwise
(2)

C. Proposed Model

Graph Convolutional Networks (GCN) [12] are an ap-
proach for semi-supervised learning on graph structured data
based on the principles of Convolutional Neural Networks to
operate directly on graphs in an efficient manner. Analogous
to CNNs, GCNs perform Template Matching, applying the
same operation on all nodes. Mathematically, for each node
we have:

hl+1
i = σ(

∑
j∈N (i)

1

cij
W lhlj) (3)

where N (i) is the set of its one-hop neighbors and cij =√
N (i)

√
N (j) is a normalization constant based on graph

structure. σ is an activation function and hlj and W l are
node j’s feature vector and the template vector at layer l,
respectively. The vectorial representation is:

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2H lW l) (4)

D̃ and Ã are the degree and adjacency matrices of the
graph, respectively, with a (n, n) size. H l+1 is the activation
function at layer l with dimensions (n, d). This is equivalent
to a first-order approximation of a localized spectral filter,
where l layers consider exactly l hops in the neighborhood.
Consequently, computational complexity scales linearly in
the number of edges and can take topologically distant
vehicles into account. This formulation is also independent
of the graph size, since all operations are done locally. One
drawback of this scheme is its isotropic nature. Anisotropy
can be introduced by giving a different weight to each
neighbor. We tried three aggregation approaches to introduce
this anisotropy:

1) Fixed attention-weight.
We compute the edge weights for each pair of nodes
eij using as kernel function the inverse of the L2

norm of their relative distance, setting self-loops to 1.
This approach takes the assumption that traffic agents
are more influenced by nearby neighbours and assigns

a fixed attention score for each interaction between
nodes. In this way, the message function for each node
would be:

ml+1
i = σ(

∑
j∈N(i)

eijh
l
j

cij + 1
), (5)

However, this formulation presents one big disadvan-
tage, as it treats the ego node’s own features equally as
the ones of its neighbors, applying the same weights.
This could significantly decrease the performance of
our prediction system. Hence, we introduce a residual
weight matrix defining a rotation on the ego node’s
features.

2) Attention mechanism in the neighbourhood aggre-
gation function.
Graph Attention Network [13] uses weighting neighbor
features with feature dependent and structure-free nor-
malization, in the style of attention. We introduce the
attention mechanism as a substitute for the statistically
normalized convolution operation. In this case, given a
source (neighbourhood features) and a Query (central
node), the output value would be the weighted sum of
all the Values, being the weight values the correlation
between the Query and the Key. Mathematically, the
attention score for each pair of nodes is calculated as
follows:

αlij = Softmax(LeakyReLU(al
T

zij)) (6)

zlij = [W lhli||W lhlj ||eij ] (7)

Eq. 6 computes a pair-wise un-normalized attention
score between two nodes. First, we applied a linear
transformation of hli and W l. It then concatenates
the features of the two neighbours and their corre-
sponding edge and computes the dot product with
a learnable weight vector (al

T

), applying finally a
LeakyReLU activation. Then, softmax is applied to
normalize the attention scores on each node’s incoming
edges. The aggregation of the neighbours’ embeddings
is performed similarly to GCN, scaled by the attention
weights (αij), as shown in Eq. 8.

hl+1
i = σ(

∑
j∈N(i)

αlijW
lhlj) (8)



Analogous to multiple channels in CNNs, GAT in-
troduce multi-head attention to enhance the model
capacity and to stabilize the learning process, i.e.
using k differently-parameterized attention heads and
concatenating the result, which allows each head to
focus on a subset of features or nodes.

3) Edge gating mechanism.
This approach can be seen as a softer attention process
than the sparse attention mechanism used in the pre-
vious point. Here, edges have a feature representation
that evolves in each layer and is learned dynamically
during training. Edge features are computed as defined
in Eq. 2. The hidden representation of each node is
computed as follows:

hl+1
i = hli + σ(Ahli +

∑
j∈N(i)

η(ej)�Bhj) (9)

η(ej) � Bhj denotes the sum of elementwise multi-
plication of rotated inputs features and a gate. Here,
the gate term is crucial, since it allows to modulate
the incoming representations based on the edge fea-
tures. The gate term is computed by Eq. 10. It is a
normalized sigmoid computed with the incoming edge
representation, defined in Eq. 11, where C, D and E
are learnable matrices.

η(ej) =
σ(ej)∑

k∈N(i)

σ(ek)
(10)

el+1
j = elj +ReLU(Celj +Dhlj + Ehli) (11)

The proposed model is composed by one first embedding
layer for transforming the input node and edge features, two
graph layers, defining exactly two hops in the neighbour-
hood, and finally a feed-forward layer that acts on each node
independently, which allows for a better decoupling of the
feature extraction and the final forecasting task.

D. Implementation Details

Our model was implemented using PyTorch Lightning
[14], a lightweight PyTorch wrapper for high-performance
AI-research and Deep Graph Library [15], a Python package
for deep learning on graphs. We trained our model using
AdamW optimizer with a learning rate of 1e-4 and using a
batch size of 256 samples. Model’s weights were initialized
using Kaiming initialization. A weight decay of 0.01 and a
dropout probability of 0.25 were used to control overfitting.
Additionally, we applied dropout with a probability of 0.6 to
the attention function, to make sure the attention is properly
learned while maintaining its genaralizability. The training
was performed as a regression task, being the overall loss
computed as:

Loss =
1

Tpred

Tpred∑
t=1

Ltδ(1 +α ∗ p overlap) + βL
Tpred

δ (12)

lossδ(y, ŷ) =

{
1
2 [yi − ŷi]

2 for |yi − ŷi| ≤ δ,
δ(
∣∣yi − ŷi| − δ

2

)
otherwise.

(13)

Ltδ =
1

n

n∑
i=1

lossδ (14)

where Lδ (13) is a combination of Mean Square Error
(MSE) and Mean Absolute Error (MAE), also known as
Huber Loss. It combines good properties from both MSE
and MAE. On the one hand, it overcomes the constant large
gradient that derives from MAE even for small loss values,
which is detrimental for learning. On the other hand, MSE
behaves nicely in this case and will converge more precisely
at the end of training, however it is much more sensitive
to outliers. Huber loss addresses this issue by using MAE
when error is high and becoming quadratic when error is
small. Hyperparameter δ represents the boundary between
both functions. Tpred is the predicted horizon, Ltδ is the
Huber loss at time t between output Y and ground truth
Ŷ positions and n is the number of nodes or road agents
present in the actual frame. The factor (1 + α ∗ p overlap)
penalizes the overlap of predicted trajectories during training,
thus learning in a socially consistent way. We compute the
overlap percentage (p overlap) between the estimated output
for all the nodes in the neighbourhood and add it as a penalty
term to the loss function. Finally, the rightside of Eq. 12,
βL

Tpred

δ , allows us to minimize Final Displacement Error
(FDE). Please, refer to the ablation study in section IV-C for
more details.

IV. EXPERIMENTAL EVALUATION.

In this section we discuss and analyse the results obtained
from our experimental evaluation.

A. Datasets

In order to validate the capability of the proposed scheme,
we conduct several experiments comparing our results with
a number of baselines using three real-world datasets with
mixed-traffic data. On the one side, InD [16] and RounD
[17] datasets contain public traffic data (position, velocity,
acceleration and type of object) recorded from a bird-eye-
view perspective at the two most relevant and challenging
type of traffic scenarios: urban unsignalized intersections and
roundabouts. On the other side, we evaluate our system with
an on-road collected dataset, the ApolloScape Trajectory
Dataset [18]. This allows us to evaluate our model against
datasets of a completely different nature.

1) InD Dataset [16]: The inD Dataset consists of 10h
of recorded trajectories at 4 different German intersections
in a top-down view. All four intersections are unsignalized
and contain walkways. Apart from that, they differ in terms
of shape, number and types of lanes, right-of-way rules,
traffic composition and kind of interaction. 5 types of agents
are involved, which allows us to test our architecture for
having heterogeneous traffic agents which show completely



different behaviors and interactions. We subsample the data,
captured at 25Hz, to 2.5Hz, obtaining sequences of 8 steps
for observations and 12 steps for prediction.

2) RounD Dataset [17]: it contains 6h of naturalistic road
user trajectories recorded at German roundabouts, presenting
a wide variety of complex and dense interactions. This
dataset is used to examine the transferability of our system,
testing our model learned under the roundabout scenario
against the inD test set. Please, refer to section IV-E for
more details.

3) ApolloScape Trajectory Dataset [18]: This dataset is
collected on-road under various traffic densities during rush
hours in Beijing. It contains highly complicated heteroge-
neous traffic flows, with a total of 53 minutes of training
sequences and 50 minutes of testing sequences captured at
2 fps. This dataset is particularly challenging, given the
limited amount of data and the scenarios covered, where
various types of traffic agents with different behaviors and
speeds create additional challenges. We train the model using
training sequences and submit the results on the testing
sequences to the ApolloScape website for evaluation. In this
challenge, they evaluate the predicted position in the next 3s
(6 frames) given 3s of observation.

B. Metrics:

The metrics used for evaluation are Average Displacement
Error (ADE) and Final Displacement Error (FDE). Apol-
loScape Trajectory challenge uses the weighted sum of ADE
(WSADE) and FDE (WSFDE) as metrics to differenciate
among different agents types by giving a different weight to
each type related to reciprocals of their average velocities,
i.e. Dv = 0.20, Dp = 0.58 and Db = 0.22 for vehicles,
pedestrians and bicycles respectively.

C. Ablation Study

We perform an ablation study to understand the contri-
bution of each component to the overall system. Table I
shows the relative results w.r.t. to best configuration, taking
into account the parameters listed below. Please, note that T
stands for True and F stands for False.

1) Aggregation Function: We test: (A) Fixed attention
weight, (B) Attention mechanism and (C) Edge gating
mechanism. Best results are shown for each model type
after adjusting all the involved parameters. Configuration (B)
achieves the best results probably due to the strong attention
mechanism involved and the multihead, which reinforce it
even further (absolute values are shown in table II). We
perform the remaining study starting from this configuration,
analysing how the different features affect the final error.

2) Residual connection (RC): In order to calculate the
hidden representation for the nodes, we add the input rep-
resentation fed to each of the graph layers. The model
experiments noticeable decrease in performance when this
residual connection is removed.

3) Residual weight (RW): Table I shows that removing
the residual weight increases the prediction error by at least
11%. This supports our belief that there is a clear difference

TABLE I: Ablation study. Results show the % of error
increment w.r.t. best configuration.

Agg.
Fcn.

RC RW Att.
Heads

FC β SC
(α)

ADE/FDE

A T T 3 T 1 5 +37%
B T T 3 T 1 5 Best
C T T 3 T 1 5 +18%
B F T 3 T 1 5 +30%
B T F 3 T 1 5 +11%
B T T 1 T 1 5 +25%
B T T 4 T 1 5 +16%
B T T 3 F 1 5 +14%
B T T 3 T 0 5 +2 / +7%
B T T 3 T 2 5 +5 / -2%
B T T 3 T 1 0 +17%
B T T 3 T 1 7 +12%

between neighbours and the ego node in this task and should
be treated accordingly.

4) Attention Heads: Multihead attention uses k
differently-parameterized attention mechanisms to stabilize
and improve learning. Best results are found for 3 attention
heads. An evident detriment in performance can be seen
when using just one head. It is worth noting, that exploration
of gradients histograms clearly reveals the prevalence of
one head above the others for the final prediction.

5) Final Feed-Forward Layer (FC): We add a final
fully-connected layer that operates on each node’s extracted
features. Table I shows the improvement of using this final
layer in prediction performance.

6) Beta (β): We try different weights for the FDE term
in the loss function. In this case, we deploy the relative
improvement in both ADE and FDE. It is crystal clear that
there is a trade-off between improving FDE and ADE. Higher
values of β achieve better FDE results, but once it becomes
higher than 1, ADE values are affected.

7) Social consistency: Finally, we explore how the
socially-consistent term added to the loss function affect the
final performance. This term penalizes the overlap among
the estimated output for all the road agents in a sequence.
This overlap is computed by means of Bolzano’s Theorem,
from which we obtain a percentage of overlap. This value is
added to the loss function weighted with hyperparameter α.
After several tests, we found that the optimum value for α
is 5, achieving not only a significant improvement compared
to the model trained without this penalty, but also allowing
us to attain a lower collision rate.

We also explore different sets of inputs, being our final
choice position, heading and type of object, since it clearly
showed best performance. Predicting velocity instead of
position is found to be beneficial when the prediction horizon
is 3s, probably due to the smoother trajectory predictions.
Hence, for ApolloScape Challenge, we predict velocities
instead of positions. However, for inD benchmark we found
better results when predicting directly x,y-coordinates. In
Table II, ADE and FDE absolute results for each intersection
and agent type are detailed. Vehicle encompasses cars, vans
and trucks, Pedestrian includes scooters and Bycicle contains
motorcycles.



TABLE II: ADE/FDE test results on inD Dataset.

Scenario Vehicle Pedestrian Bycicle Avg.
Intersection A 0.67/1.54 0.50/1.12 0.29/0.65 0.67/1.55
Intersection B 0.41/0.91 0.54/1.21 0.46/1.01 0.48/1.08
Intersection C 0.18/0.41 0.52/1.15 0.51/1.14 0.30/0.69
Intersection D 0.39/0.80 0.41/0.84 0.23/0.48 0.40/0.83

Average 0.36/0.80 0.52/1.16 0.47/1.06 0.43/0.98

D. Experimental Results on InD and Apollo Benchmarks

SCOUT is compared to other baselines and existing so-
lutions using InD dataset following the same data prepro-
cessing strategy as [19] in order to make a fair comparison.
Tobs = 3.2s and Tpred = 4.8s are used, being the time
interval 0.4s, i.e. 8 frames for observation and 12 for
prediction. For each intersection, 1/3 of recordings are kept
for testing. 80% of the remaining recordings are used for
training and 20% for validation. We also compare our system
against other methods on ApolloScape leaderboard that have
publications. All used baselines are detailed hereunder:
• TrafficPredict [20]: A long short-term memory-based

(LSTM-based) prediction algorithm that uses an in-
stance layer and a category layer to learn trajectories
and interactions. It is the baseline of the ApolloScape
Trajectory Dataset.

• Social LSTM (S-LSTM) [21]: uses LSTMs to extract
features of trajectory and propose social pooling to
model interactions for pedestrian trajectory prediction.

• Social GAN (S-GAN) [22]: proposes a conditional GAN-
based trajectory predictor.

• StarNet [23]: ranked #1 in the CVPR2019 trajectory
prediction challenge. It uses a star topology which
includes a hub networrk that takes observed trajectories
to model interactions and multiple host networks, each
of which corresponds to one pedestrian for predicting
future trajectories.

• GRIP++ [24]: the enhanced version of GRIP [6] uses
a graph to represent the interactions of close objects,
applies several graph convolutional blocks to extract
features, and subsequently uses an encoder-decoder
LSTM model to make predictions.

• Attentive Maps Encoder Network (AMENet) [25]: a
generative model based on a conditional variational
auto-encoder (CVAE) that uses attentive dynamic maps
for interaction modeling.

• Dynamic Context Encoder Network (DCENet) [19]:
the most recent state-of-the-art on the inD benchmark.
It extracts spatial context by means of self-attention
architectures that is fed along with observed trajectories
to two LSTM encoders. Future trajectories are sampled
from the latent space encoded by a CVAE.

Table III summarizes the quantitative results measured by
ADE/FDE on inD, where all models were trained and tested
using the same data preprocessing. It is clear that SCOUT
achieves superior performance by a margin both in ADE
and FDE terms. The aforementioned training and testing
data splits were chosen to keep it consistent with the results
already published on the inD benchmark. Notwithstanding,

we believe one of the intersections should be kept for testing,
completely unseen during training, in order to make a fair
evaluation of the system. In this way, we can assure the
model has not overfitted the data by learning trajectories
distributions of each of the 4 scenarios. The intersections
differ greatly from one to another, since they are located
in completely different areas with a wide variety of tra-
jectory and interaction distributions, number and type of
agents. Hence, this split would be the appropriate to test
the generalizability of the model. We perform experiments
keeping Intersection D for testing, which amounts to a
total of 3 recordings, and Intersection A for validation (7
recordings), leaving the remaining 22 recordings for training.
After training the system using this partitioning, we obtain an
ADE of 0.56m and FDE of 1.07m, showing that our model is
able to predict trajectories in completely new road topologies
and scenarios, yet surpassing all baselines. Fig. 3 depicts
some qualitative results across all intersections.

In Table IV, results obtained directly from the Apol-
loScape leaderboard are deployed. SCOUT achieves the best
performance in global WSADE and WSFDE. It only slightly
fell behind the GRIP++ model on categories ADEp and
FDEp. These results indicate that our model is able to achieve
superior performance on datasets of a completely different
nature.

E. Analysis of Scene Transferability

A major challenge in autonomous driving is to find an
algorithm that is transferable between different scenarios,
i.e. having the capability to generalize beyond the training
distribution, which would allow the autonomous vehicle to
adapt quickly to previously unseen distributions. One main
advantage of using a generic representation of the scene as a
graph is that it allows the model to be transferable between
different environments and road topologies. In this section,
we make use of RounD dataset to explicitly analyse the
generalizability of our model, executing two different studies:
• First, we trained our model under InD dataset to predict

8 frames from 8 observed frames and test it against an 8-
way roundabout from the RounD dataset. First column
of Table V shows ADE and FDE values obtained from
(I) a regular model trained and evaluated with data from
the InD dataset and (II) the zero-shot transferred model
learned using training data from the roundabout scenario
without additional training on the intersection data.

• Secondly, we trained our model using sequences from
the RounD dataset and test it against an unsignalized in-
tersection from the inD dataset. Second column of Table
V deploys the results obtained from (I) a conventional
model trained and evaluated using only RounD data and
(II) a zero-shot model learned under InD dataset without
additional training on the roundabout scenario.

There are some conclusions that can be drawn from these
results. On the one hand, performance in RounD is noticeably
worse due to two main factors. First, it includes trajectories
that are significantly more challenging than those from
inD dataset given the topology of the roundabouts and the



TABLE III: Comparative Results on InD benchmark measured by ADE/FDE.

Method Intersection A Intersection B Intersection C Intersection D Avg.
S-LSTM 2.29 / 5.33 1.28 / 3.19 1.78 / 4.24 2.17 / 5.11 1.88 / 4.47
S-GAN 3.02 / 5.30 1.55 / 3.23 2.22 / 4.45 2.71 / 5.64 2.38 / 4.66
GRIP++ 1.65 / 3.65 0.94 / 2.06 0.59 / 1.41 1.94 / 4.46 1.28 / 2.88
AMENet 1.07 / 2.22 0.65 / 1.46 0.83 / 1.87 0.37 / 0.80 0.73 / 1.59
DCENet 0.96 / 2.12 0.64 / 1.41 0.86 / 1.93 0.28 / 0.62 0.69 / 1.52

SCOUT (Ours) 0.67 / 1.55 0.48 / 1.08 0.30 / 0.69 0.40 / 0.83 0.46 / 1.03

TABLE IV: Comparative Results on ApolloScape Dataset.

Method WSADE ADEv ADEp ADEb WSFDE FDEv FDEp FDEb
TrafficPredict 8.58 7.94 7.18 12.88 24.23 12.77 11.12 22.79

S-GAN 1.96 3.15 1.33 1.86 3.59 5.66 2.45 4.72
S-LSTM 1.89 2.95 1.29 2.53 3.40 5.28 2.32 4.54
StarNet 1.34 2.39 0.78 1.86 2.49 4.28 1.51 3.46
GRIP++ 1.27 2.24 0.71 1.85 2.39 4.07 1.38 3.53

SCOUT (Ours) 1.26 2.21 0.73 1.82 2.35 3.93 1.41 3.37

TABLE V: Transferability assesment (ADE/FDE).

InD Dataset RounD Dataset
Conventional Model 0.33 / 0.52 1.22 / 2.55

Zero-shot Model 0.54 / 1.02 1.38 / 3.45

plentiful interactions that happen among agents that move
at high speeds. Secondly, the amount of sequences is half
the number of sequences obtained from inD dataset. On the
other hand, the model trained under RounD shows better
results when tested against an inD scenario. This proves
our hypothesis that RounD trajectories are more difficult to
predict and that our model is able to generalize. When testing
a transferred model from inD to RounD, there is a remarkable
change in performance depending on the specific scenario
used for testing. The first two scenarios correspond to smaller
roundabouts where there exist more linear trajectories. In this
case, the model trained under inD performs better than the
conventional model. However, when we use larger and more
challenging roundabouts for testing, the opposite results are
found. Table V shows the average values of ADE and FDE.

F. Visualization of the influence of interactions.

One serious concern when dealing with neural networks
is their lack of interpretability or explainability due to the
black-box nature of most high-performance state-of-the-art
models. Therefore, one of our goals in this work was to keep
the model simple enough to be able to carefully explore it.
In this section, we provide some insights that help us better
explain our model’s predictions. Given that the gradient
is the derivative of the loss function with respect to a
particular parameter, parameters for which a small change
could drastically change the loss of an example are expected
to have a large derivative relative to that of a non-relevant
parameter. Following this intuition, we chose a particular
technique called Integrated Gradients [26] that attributes
a given model’s prediction to input features, relative to a
certain baseline input. More concretely, Integrated Gradients
represents the integral of gradients with respect to inputs
along the path from a given baseline to input. In our case,
we use edge weights as inputs to understand the influence

of each interaction in the final prediction. To illustrate the
results found, we plot the matching graph that is fed to the
model for each of the scenes in Fig. 3. In this visualization,
edge colors and thickness represent the importance of each
interaction for the final prediction. Following this procedure,
we analyse four scenarios:
• Case 1: T-junction in an industrial area with few inter-

actions. Here, the only interaction that has some impact
on the final prediction is the one between the truck and
the car situated in front of it.

• Case 2: a T-junction, where the main road contains cycle
paths. In this scenario we can observe a cyclist and a car
behind of it aiming to turn right, being the connection
between both agents the strongest one.

• Case 3: A four-armed intersection with a priority road
where one vehicle is stopped at the give way sign
yielding to oncoming traffic. The corresponding graph
clearly shows the importance of the interaction among
the three vehicles involved.

• Case 4: city center scenario with a zebra crossing near a
4-way intersection, where two cyclists, two pedestrians
and two vehicles approach the zebra crossing.

We can also directly visualize the attention weight between
each pair of nodes in order to understand the attention
learned. Because this weight is associated with edges, we can
visualize it in the same way as with Integrated Gradients. As
expected, we obtain similar results from both techniques. We
also found connections with parked cars, as shown in Case
2 and Case 4. We believe these cars are seen as road limits,
and hence are also important for predicting trajectories of
moving agents.

V. CONCLUSIONS

In this work, we propose SCOUT, a novel attention-
based graph neural network for socially-aware and socially-
consistent trajectory forecasting. Our scheme obtains a flex-
ible and generic high-level representation of the scene as a
graph by modelling each agent as a node and interactions
as edges. Agent’s features are aggregated using an attention
mechanism and the extracted features are fed to a final



  

Fig. 3: Qualitative results and interaction importance visualization on inD dataset. From left to right: case 1 to 4.

feed-forward network for the final behavior prediction. The
simplistic nature of our model allows us to explore it in
order to understand the importance of each interaction for the
final prediction. We also perform an extensive ablation study
to understand the contribution of each component to the
overall system and analyse its flexibility and transferability
by testing it against a completely new scenario. Our scheme
achieves state-of-the-art results in both ApolloScape and
inD benchmarks. Future work will explore the prediction
of intentions rather than trajectories and the contribution of
using image data as additional input to our system.
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