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T
o place a vehicle on the market, car manufacturers need 
prior authorization, granted by the competent author-
ity, after proving that the vehicle complies with all ap-
plicable regulatory standards and safety certification 

requirements. Whether through vehicle type approval or 
self-certification approaches, original equipment manufac-
turers (OEMs) must pass stringent certification processes to 
validate a component, a system, or the entire vehicle [1].

Background on Certification Tests 
Conventional vehicles are certified through classical ap-
proaches, where different physical certification tests are 
set up on test tracks or test benches to assess the required 
safety level using various performance criteria. These 
approaches are well suited for components, systems, and 
vehicles with limited complexity and limited interactions 
with other entities (e.g., braking tests). However, as the 
complexity of systems increases (e.g., electronic stability 
control), classical approaches cannot address all relevant 
safety areas due to two main reasons. The first is the large 
number of safety-related systems (including multiple elec-
trical and electronic systems), which increases risks from 
systematic failures and random hardware failures. This is 
reasonably well addressed by the existing functional safety 

and Automotive Safety Integrity Levels requirements in 
the automotive industry (e.g., ISO 26262). The second is 
the enormous variability of possible multiagent scenarios, 
which, on the one hand, implies the need for a formal safe-
ty model [2], and on other hand, has led to the introduc-
tion of simulation-based safety-oriented audits as a way to 
complement physical vehicle testing [3].

With the introduction of assisted [Society of Automotive 
Engineers (SAE) Levels 1 and 2], automated (SAE Level 3), 
and autonomous (SAE Levels 4 and 5) driving systems [4], 
[5], the overall complexity increases in terms of the num-
ber of software functions, variants of multiagent scenarios 
and interactions, and potentially affected safety areas [6]. 
The complexity of these systems, and therefore the diffi-
culty to test them, increases with the level of automation, 
being particularly important in the step from SAE Level 
3 to 4 since the automated driving system must be able to 
reach a minimal risk condition within its Operational De-
sign Domain without user/passenger intervention [7].

New innovative testing approaches, including proce-
dures of different natures, are needed for future vehicle 
safety regulatory frameworks and for assessments under 
current exemption procedures [8]. New online/in-service 
safety monitoring and verification mechanisms [9] that act 
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after the market deployment of automated driving systems 
[6] are also needed as a way of reducing the need to test all 
possible combinations at the time of type approval. Several 
national and international regulatory and standardization 
initiatives and projects are already underway to tackle all 
these problems [10].

One of the most solid regulatory proposals is being de-
veloped by the Working Party on Automated/Autonomous 
and Connected Vehicles (GRVA) of the United Nations Eco-
nomic Commission for Europe (UNECE) World Forum for 
Harmonization of Vehicle Regulations (WP.29). It is based 
on three pillars that must be assessed together [11]. 
1) Audit and Assessment: This includes the use of simulation 

to cover all types of scenarios but especially edge case 
scenarios that are unlikely to occur in real-world traffic 

2) Physical Certification Tests: These assess critical sce-
narios, performed in controlled environments on test 
tracks (closed roads) and involving sophisticated equip-
ment, such as lightweight global vehicle [12], articulat-
ed pedestrian [13], and bicyclist [14] targets 

3) Real-World Test Drives: These are devised as a “driving 
license test” for automated driving systems to assess the 
overall capabilities and behavior of the vehicle in non-
simulated traffic on public or open roads. 

This approach has been the one adopted by United Nations 
to regulate the approval of advanced emergency braking 
systems (AEBS) [15] and, more recently, automated lane 
keeping systems (ALKS) [16]. These regulations have re-
cently been integrated in countries such as Japan and 
Germany, enabling the commercialization of the first SAE 
Level 3 automated driving systems by two different car 
manufacturers [17], [18].

A similar approach was provided by the PEGASUS proj-
ect [19], including laboratory, simulation, testing site tests, 
and field tests, with particular emphasis on the definition of 
use cases and test scenarios. In another project, ENABLE-
S3 [20], the goal was to reduce the testing efforts of tradi-
tional road testing by focusing on virtualization. One of 
the main contributions was the use of semivirtual systems, 
such as the DrivingCube [21], which combines both simula-
tion and ready-to-drive vehicles on a chassis dynamometer 

and on a power-train testbed. This approach can be con-
sidered as an intermediate step between pure simulation-
based verification and physical certification testing or as a 
subfield of simulation using vehicle in the loop (VIL).

The three approaches mentioned (i.e., simulation, in-
cluding VIL simulation, and physical and real-world testing) 
have strengths and weaknesses [22], which is why it is 
important to implement them holistically [11]. In Table 1, 
we illustrate the advantages and disadvantages of all testing 
approaches. As can be observed, the methods are somehow 
complementary. For example, although simulation-based 
testing allows full controllability, repeatability, and variabil-
ity in a very efficient way, these methods exhibit very low 
fidelity and lack real-world behaviors. We can increase fidel-
ity at the cost of increasing complexity and thus decreasing 
efficiency, from VIL simulation to physical testing on closed 
tracks. But the absence of real behaviors remains a problem, 
which can only be partially compensated by testing in real 
traffic conditions (open roads).

Another relevant variable refers to the degree to which 
the driving functions can be optimized on the specific sce-
narios, which can be seen as a shortcut by OEMs to over-
fit the performance of their systems to the test scenarios. 
This has a negative impact on the possible fidelity of the 
tests, while the performance of the systems in real traffic 
remains unknown. In general, if the simulation conditions 
are known a priori, if the physical test conditions are of 
closed tracks, or if the proving grounds or the test area are 
in real traffic, all test methods are potentially subject to 
overfitting. Still, there are some differences. For example, 
on the one hand, the uncontrolled conditions of open road 
testing make this method less prone to overfitting. On the 
other hand, the low variability and the strict control and 
repeatability conditions of the scenarios in the physical 
certification on closed roads are favorable conditions for 
the optimization of the systems to the proposed scenarios.

A closer look at the different methods reveals that com-
plementarity is limited as the scenarios addressed by each 
approach are of a different nature. In Figure 1, we illus-
trate three different types of scenarios (typical, critical, 
and edge), referring to their probability of occurrence with 

Approaches Control./Repeat. Scalability Variability Fidelity Efficiency 
Test  
Overfitting* 

Real 
Behaviors† 

Simulation                             

VIL simulation                             

Physical track                             

Open roads                             
Note: *Test overfitting refers to the degree to which the systems can be optimized on specific test scenarios. A high score means a low probability of overfitting. †Real behaviors refers to the degree to 
which the test method can include actual behaviors of other agents (pedestrians, cyclists, other drivers, and so on). Control.: controllability; Repeat.: repeatability

Table 1. The main features of the different testing approaches.
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respect to the degree of complexity and potential risks. As 
can be observed, the distribution of scenarios follows a 
long-tail distribution, which requires significant scale [2] 
to discover and properly handle the long tail of rare events 
[23]. In Table 2, the types of scenarios that can be addressed 
for each testing method are depicted. As can be inferred, 
high fidelity is achievable only for typical scenarios, with 
higher uncertainty for critical and edge scenarios. 

In addition, current testing approaches do not allow the 
assessment of safety with real behaviors for critical and 
edge cases. This is particularly relevant for automated and 
autonomous driving functions that make use of predictive 
perception, i.e., systems that learn and model the behaviors 
and interactions of traffic agents to anticipate future actions 
and motions to be considered in the path planning layer. In 
fact, higher levels of automation (autonomous) are expected 
to be achieved thanks to predictive capabilities [5]. These pre-

dictive systems are expected to en-
able autonomous driving to become 
more like manual driving, increas-
ing safety margins, reducing risks, 
and providing smoother and more 
acceptable motion trajectories. All 
these factors have a direct effect on 
the perceived safety, risk, and trust 
of users, which are directly linked 
to user acceptance [24].

Incorporating real behaviors in critical and edge sce-
narios, both in simulation environments and in physical 
tests on tracks, is not straightforward. However, the advan-
tages in safety and comfort [25] that predictive autonomous 
driving brings require new efforts to improve test methods 
for future certification processes. In an attempt to take 
the first steps, in this article, we present and analyze the 
results of physical tests on the proving grounds of several 
predictive systems in automated driving functions devel-
oped within the framework of the BRAVE project [26]. A 
number of use cases involving vehicles and vulnerable road 
users (VRUs) on different scenarios were defined, some of 
them directly equivalent to the European New Car Assess-
ment Programme (Euro NCAP) test protocols for automatic 
emergency braking (AEB) systems [27], [28].

We focus our work on physical tests because they have a 
higher level of maturity (e.g., Euro NCAP test protocols) and 
offer more room for improvement in terms of variability and 
overfitting as well as a better relationship between fidelity 
and controllability/repeatability [22]. These tests are also es-
sential to validate the fidelity (reality gap) of simulation-based 
methods [11]. Based on our experience in testing predictive 
automated driving functions, we identify the main limita-
tions of current physical testing approaches when dealing 
with predictive systems, analyze the main challenges ahead, 
and provide a set of practical actions and recommendations to 
consider in future physical testing procedures for automated 
and autonomous driving functions. From this practical bot-
tom-up approach (from direct empirical evidence in testing 
to conceptual identification of needs for future certification 
processes), we aim to contribute to and complement the high-
level approaches carried out worldwide to adapt regulatory 
standards and safety certification requirements for increas-
ingly advanced autonomous driving systems.

An Overview of Predictive Perception Systems
The experiments were performed using the University of 
Alcalá’s (UAH’s) DRIVERTIVE vehicle [29]. DRIVERTIVE 
is a mechanically automated vehicle that carries multiple 
sensors for environment perception, such as an HDL-32E 
lidar, three radars, and multiple cameras. The objective 
of the experiments was to validate the goodness of pre-
dictive systems to outperform conventional last-second 
reaction systems. These experiments involved different 

Approaches Typical Critical Edge 

Simulation   

VIL simulation   

Physical track 

Open roads 

Table 2. The distribution of scenarios by the testing approach.
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FIG 1 The types of scenarios, probability of occurrence in real-world 
traffic (log-scale), complexity, and risk. The distribution follows a long-tail 
distribution. Refer to [11] for more details on the scenarios.

Incorporating real behaviors in critical and edge scenarios, 
both in simulation environments and in physical tests on 
tracks, is not straightforward.
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traffic agents, such as vehicles, pe-
destrians, and cyclists in critical, 
controlled situations. For self-con-
tainment reasons, in this section, 
we briefly introduce the predictive 
systems used in the experiments.

Regarding the interaction with 
vehicles, two deep learning ap-
proaches were used for the infer-
ence of both the intention and trajectories of vehicles. The 
intention prediction system uses a classification approach 
with a Resnet50 [30] backbone to classify enhanced im-
ages encoded as a single red, green, blue image, includ-
ing context, interactions, and vehicle motion patterns [31]. 
This model estimates the probability of keeping or chang-
ing lanes. The trajectory prediction model [32] uses radar 
targets to create a top-view time-evolving map. The most 
likely future representation of this input map is inferred by 
a U-net model [33], [34] trained for this purpose. The output 
of this model is used as a triggering mechanism to assess 
critical cut-in maneuvers.

For pedestrians, body and facial key point detectors 
[35] act as the core for prediction systems. Deep learning 
approaches use body key points to anticipate changes in 
pedestrian motion patterns [36] and also to predict the in-
tention of crossing from the sidewalk or at a crosswalk [37], 
[38]. Face key points are of paramount importance for the 
detection of crossing intention as eye contact is a powerful 
nonverbal channel of communication often used to express 
intention to drivers. This eye-contact detection was very 
useful in improving response time in tests with moving 
head dummies using the eye-contact signal as a trigger for 
the braking response.

Finally, interaction experiments with bicyclist dum-
mies were conducted using an instance segmentation ap-
proach. This method provides object-level detections that 
allow for radar data fusion. Cyclist path prediction was im-
plemented using a standard approach based on a physical 
model [39]. However, in the tests, no actions were expected 
from the cyclist (e.g., switching dynamics [40]), and noth-
ing could be predicted. Interaction with the dummy was 
limited to maintaining the safety distance, being detected 
at 100 m, which provided enough space to ensure a smooth 
and safe maneuver.

The Experimental Validation of Predictive  
Automated Systems
This section provides experimental results derived from 
physical tests developed on the proving ground at Union 
Technique de l’Automobile et du Cycle (UTAC) facilities [41]. 
These tests are intended to evaluate autonomous capabilities 
at standardized Euro NCAP protocol tests as well as custom-
defined autonomous tests. The goal of these experiments is 
to validate and measure the safety and goodness of predictive 

systems in critical and controlled circumstances. This sec-
tion begins with a description of the experiments and their 
correspondence with Euro NCAP tests. For the sake of space, 
the most relevant configurations are analyzed in detail in 
two sections: “The Assessment of Vehicle–VRU Interaction,” 
related to VRUs, i.e., pedestrian and bicyclist interactions, 
and “The Assessment of Vehicle–Vehicle Interaction,” related 
to vehicle–vehicle interactions.

A Description of the Experiments
Several rounds of experimentation were conducted on the 
proving grounds at UTAC (depicted in Figure 2), a technology 
center located at Linas-Monthléry, France. The experiments 
were carried out in the framework of the BRAVE project [26] 
using the UAH’s DRIVERTIVE vehicle. During the experi-
ments with the vehicle under test (VUT), the following use 
cases were tested: pedestrian (VRU-1 and VRU-2), cyclist 
(VRU-3), cut-in vehicle (VEH-1), and intersection (VEH-2). 
A detailed description of each use case is provided in the 
next section. All use cases were designed and tested to 
efficiently assess the performance and the added value of 
the predictive systems developed in BRAVE.

Some of the tests conducted in this work have a direct 
equivalence with Euro NCAP use cases. Other tests have 
been specifically devised and designed to be tested in the 
BRAVE project as a means to provide further recommenda-
tions to the Euro NCAP. Table 3 provides the equivalence 
between tests conducted in BRAVE and use cases defined 
by the Euro NCAP.

As can be observed, the VEH-2 intersection use case is 
totally new, having no equivalence in Euro NCAP tests. It 

FIG 2 The proving grounds at UTAC’s premises.

The objective of the experiments was to validate the goodness 
of predictive systems to outperform conventional last-second 
reaction systems.
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has been completely devised and designed in the frame-
work of the BRAVE project in an attempt to provide rec-
ommendations to the Euro NCAP on how to properly test 
automated vehicles when dealing with interactions with 
other vehicles at intersections.

The Assessment of Vehicle–VRU Interaction
Several tests were conducted to assess vehicle–VRU inter-
actions. For each use case, several configurations were ex-
haustively tested, as described in Table 4. The schematic 
description of all the use cases tested is provided as follows.

 ■ VRU-1: An external human–machine interface (HMI) 
[GReen Assistant Interfacing Light (GRAIL) system [42]] 
onboard the vehicle is used to interact with pedestrians 
willing to cross the street.

 ■ VRU-2: The emergency reactions of the VUT are tested 
in different situations when interacting with pedestri-
ans whose predicted trajectory intersects the VUT esti-
mated trajectory.

 ■ VRU-3: The emergency reactions of the VUT are tested 
when interacting with cyclists.
For the sake of space, the description of experiments 

is provided only for the most challenging configurations, 
namely VRU-1 Configuration 3, VRU-2 Configuration 2, 
and VRU-3 Configuration 3. Data showing a summary of 
the results obtained for all the use cases in their different 
configurations are provided at the end of the section.

VRU-1 Configuration 3: Pedestrian  
Walks in Parallel, Turns Head Toward  
the Car, and Crosses the Street
These tests were conducted using a dummy with an articu-
lated head that can be turned to emulate that the pedestrian 
is looking at the driver before starting to cross the street. 
Initially, the pedestrian walks in parallel with the road. Af-
ter a while, the pedestrian stops and turns his head toward 
the car, emulating eye contact with the driver. The VUT is 
then expected to detect the pedestrian’s intention to cross 
the street and, consequently, to decrease speed, gradually 
and smoothly, until coming to a full stop. At the same time, 
the VUT automatically activates the GRAIL system as a 
means to signal to the pedestrian that the VUT has detected 
his intention to cross, and it is going to brake. The graphi-
cal representation of this configuration is depicted in 
Figure 3. Figure 4 depicts an example of how the computer 
vision system detects the dummy face. The green dots over-
laid on the face represent the face features recognized by 
the algorithm. These features are used to find out whether 
the dummy is looking at the VUT. 

Figure 5 shows the data logged during the experiments 
conducted at 40 km/h. In the figure, the longitudinal dis-
tance between the VUT bumper and the pedestrian (bum-
per to pedestrian) and the VUT speed are depicted in blue 
and orange, respectively. The dashed orange curve shows 
the VUT reference speed, while the solid orange curves 
depict the VUT real speed. The figures also show the mo-
ments of pedestrian detection (pedestrian considered) and 
face detection (pedestrian looking) by means of green tri-
angles. The first triangle determines the moment when the 
GRAIL system is preactivated (even though the pedestrian 

VRU Use 
Case Configuration

VRU-1 Configuration 1: Pedestrian crossing at 50% impact (stop) 

Configuration 2: Pedestrian walking in parallel (not crossing) 

Configuration 3: Pedestrian turns head and crosses 

VRU-2 Configuration 1: Pedestrian crossing at 50% impact (stop) 

Configuration 2: Occluded pedestrian crossing at 50% impact (stop)

Configuration 3: Pedestrian crossing at 25% impact (avoid) 

VRU-3 Configuration 1: Overtake 

Configuration 2: Reduce and follow 

Configuration 3: Reduce, follow, and overtake 

Table 4. The descriptions of configurations in VRUs’ use cases.

BRAVE Test 
Euro NCAP Test 
Equivalence

VRU-1 GRAIL 

Configuration 1: Crossing on green LED signal 

Configuration 2: CPLA-50 deceleration then overtake — 

Configuration 3: Longitudinal then crossing on green LED CPLA-50 day 

VRU-2 PEDESTRIAN — 

Configuration 1: CPNA-50. full stop 

Configuration 2: CPNA-O-50, full stop CPFA-50 

Configuration 3: CPNA-25, AES CPNC-50*

VRU-3 CYCLIST CPNA-25 day 

Configuration 1: CBLA-25, overtake 

Configuration 2: CBLA-25, deceleration — 

Configuration 3: CBLA-25, deceleration then overtake CBLA-50 day 

VEH-1 CUT-IN — 

Configuration 1: Deceleration within central lane 

Configuration 2: AES onto the left lane Cut-in 50/10 

VEH-2 INTERSECTION — 

Configuration 1: Straight line with crossing target 

Configuration 2: Straight line with turning target — 

— 
*The position of the car that causes the occlusion is lateral rather than longitudinal. The 
dummy corresponds to an adult instead of a child. CPLA: car-to-pedestrian longitudinal adult; 
CPNA: car-to-pedestrian nearside adult; CPFA: car-to-pedestrian farside adult; CPNC: car-to-
pedestrian nearside child.

Table 3. The equivalence between BRAVE and Euro  
NCAP use cases.

Authorized licensed use limited to: Univ de Alcala. Downloaded on December 15,2022 at 06:54:32 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  83  •  NOVEMBER/DECEMBER 2022IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  82  •  NOVEMBER/DECEMBER 2022

is first detected well in advance by the onboard camera). 
The second triangle determines the moment when the pe-
destrian face is looking at the driver. 

It can be clearly observed that the VUT speed starts to 
diminish as soon as the GRAIL sys-
tem is switched on. The VUT comes 
to a full stop in front of the pedes-
trian at a distance ranging between 
6 and 7 m, providing safety and a 
comfortable margin for the pedes-
trian to cross. The quick decisions 
taken by the system lead to anticipa-
tive maneuvers that allow the VUT 
to perform smooth and safe actions. 
Once more, this way of operation is 
expected to contribute to increas-
ing the feeling of comfort in the VUT 
passengers and the feeling of safety 
and respect in pedestrians.

VRU-2 Configuration 2: Occluded Pedestrian  
Crossing at 50% Impact (Stop)
This test was conducted with a dummy emulating a pedes-
trian who emerges from behind a parked car and starts 
to cross the street unexpectedly. As in the previous con-
figuration, the trajectory of the pedestrian is estimated 
to intersect the VUT trajectory (if both the VUT and the 
pedestrian keep a constant velocity) at the central point 
of the VUT. Thus, the overlap between the VUT and the 
pedestrian at the time of impact is estimated to be 50%. 
This test was conducted at two different VUT speeds: 30 
and 40 km/h. The pedestrian walks at a constant velocity 
of 5 km/h with an initial lateral offset of 6 m with respect to 
the main axis of the VUT. At the beginning of the test, the 
pedestrian is not visible from the VUT given that it is oc-
cluded by a parked car. Figure 6(a) shows a graphical rep-
resentation of this configuration, while Figure 6(b) shows 
a snapshot of the dummy being detected by the computer 
vision algorithm during the execution of the test. As can be 
observed, the detected pedestrian (highlighted by a blue 
bounding box) is only partially visible from the VUT given 
that it is occluded by the parked car.

The early detection of the upper body of the pedestrian 
makes it possible to start the reaction maneuver in time. 
Figure 7 provides a graphical representation of the main 
variables measured during the execution of the test with the 
VUT speed of 40 km/h. Figure 7(a) shows the VUT-VRU lon-
gitudinal distance (on the left) in blue and the VUT speed (on 
the right) in orange. Both the reference VUT speed (solid) 
and the current speed (dashed) are provided. As observed, 
the VUT reference speed is set to zero as soon as the pe-
destrian is detected. This is intended to execute the braking 
maneuver as abruptly as possible, given that the situation is 
critical, and safety is the only variable to consider. 

The VUT is capable of coming to a full stop at a distance of 
just a few centimeters (3 cm) in front of the pedestrian. The 
VUT cannot start the braking maneuver until the pedestrian 
starts to be perceived by the onboard sensors. This happens 
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FIG 3 Use case VRU-1 Configuration 3: Walk, stop, and cross.

FIG 4 The detection of a dummy face using computer vision.
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with certain delay given the occlusion 
conditions [see details in Figure 7(b)]. 
In these circumstances, it can be stat-
ed that a VUT velocity of 40 km/h is the 
limit to guarantee safety in this typi-
cal urban situation. As a consequence, 
the recommendation to set a speed 
limit of 30 km/h in urban areas is fully 
supported by the results obtained in  
this test.

VRU-3 Configuration 3:  
Reduce, Follow, and Overtake
In this configuration, the VUT ap-
proaches the cyclist, observes that 
there is oncoming traffic on the ad-
joining lane, and waits until the lane 
is free. After that, the VUT starts to 
execute a smooth overtaking ma-
neuver with sufficient lateral dis-
tance with respect to the cyclist to 
ensure comfort and safety simulta-
neously. The graphical description 
of this configuration is depicted in 
Figure 8. The VUT moves at a ve-
locity ranging 30/40 km/h. The cy-
clist moves at a constant speed of 
15 km/h. The initial lateral offset 
between the VUT main axis and the 
cyclist trajectory is 0.45 m. Figure 9 
shows the cyclist dummy used in 
the experiment.
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FIG 6 Use case VRU-2 Configuration 2: occluded pedestrian crossing at 50% impact (stop). (a) Graphical representation. (b) VRU detection example. 
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Figure 10 shows the VUT refer-
ence (blue dashed) and current (blue 
solid) speed and the VUT lateral off-
set (in orange), respectively. As can 
be observed, the VUT performs a 
smooth maneuver divided in three 
steps. In the first step, the VUT keeps 
a constant speed of 40 km/h. In a sec-
ond step, the VUT decreases velocity 
until reaching a value of 20 km/h 
that is kept constant for a while un-
til the oncoming traffic disappears. 
In the final step, the VUT performs 
the overtaking maneuver while keeping a constant speed 
of 20 km/h and leaving a lateral safety distance of 4 m with 
respect to the cyclist. As in the previous configurations, the 
VUT is not allowed to initiate the overtaking maneuver un-
til the distance with the cyclist reaches a predetermined 
value, and no predictive system was implemented, given 
that it was considered to provide no added value in the con-
ditions specified in the test. The passengers’ comfort and 
the cyclist’s safety are once more guaranteed due to the 
early detection and smooth action. 

The conclusion of these experiments with cyclists is 
that although comfort and safety are guaranteed, the ar-
tificial intelligence (AI)-based predictive systems can offer 
much more for the sake of safety and anticipation in critical 
situations. However, it would be necessary to further de-
velop the dummy technology to enable additional dummy 
movements (turning head, raising arm, inclining the body 
to the left or to the right, changing the pedaling pace, and 
so on). The deployment of such technology would allow the 
testing of much more challenging cyclist-based use cases.

The Assessment of Vehicle–Vehicle Interaction
Several tests were conducted to assess vehicle–vehicle in-
teractions following different configurations, as described 
in Table 5. The schematic description of all the use cases 
tested is provided as follows.

 ■ VEH-1 Cut-in: The VUT interacts with other vehicles 
willing to merge into the mainstream lane from an en-
try ramp.

 ■ VEH-2 Intersections: The VUT interacts with other ve-
hicles entering an intersection.
As in the previous section, the description of experiments 

is provided only for the most challenging configurations, 
namely VEH-1 Configuration 2 and VEH-2 Configuration 2. 
Data showing a summary of the results obtained for all the 
use cases in their different configurations are provided at 
the end of the section.

VEH-1 Configuration 2: Change Lane
Two different configurations were tested in this use case. 
Both configurations simulate a vehicle entering a highway  

FIG 9 The cyclist dummy used in VRU-3 experiments.
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VEH Use Case Configuration 

VEH-1 Configuration 1: Reduce and follow 

Configuration 2: Overtake 

VEH-2 Configuration 1: Crossing at intersection

Configuration 2: Turning at intersection 

Table 5. Descriptions of configurations in use cases  
VEH-1 and VEH-2.

Configuration 3: CBLA-25, Deceleration then Overtake

15 km/h

30 km/h
40 km/h 0.45 m Separate the Vehicles’ Axes From the Cyclist’s

FIG 8 Use case VRU-3 Configuration 3: reduce, follow, and overtake.
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from an entry ramp. In both cases, the trajectories of the 
VUT and the merging vehicle must be synchronized to gen-
erate a smooth maneuver. The VUT drives at a constant 
speed of 50 km/h. The global vehicle target (GVT) drives at 
a constant speed of 10 km/h. These relative speeds simu-
late a common highway scenario in which the main traffic 
flow drives at 120 km/h and the side traffic flow merges at 
80 km/h. The first configuration (Configuration 1) evalu-
ates the adaptive cruise control functionality, assuming that 
the GVT will merge in front of the VUT and that there is no 
chance to use the adjoining lane. The VUT should start to 
brake as soon as it considers that the GVT will merge into the 
VUT’s trajectory. 

The second configuration (Configuration 2) evaluates 
the automatic emergency steering (AES) functionality, as-
suming that the GVT will merge in front of the VUT and that 
the adjoining lane is available to be used in a lane change 

maneuver. The VUT should start to 
change the lane as soon as it con-
siders that the GVT will merge into 
the VUT’s trajectory. The VUT’s 
performance relies on the predic-
tion or detection of an oncoming 
lane change in both configura-
tions. The earlier the lane change 

is detected, the longer the time gap and the relative dis-
tance to the GVT will be. This anticipation will allow the 
implementation of smooth actions, leading to higher safety 
and comfort levels. The graphical description of this con-
figuration is depicted in Figure 11, while Figure 12 shows 
the vehicle dummy used in the experiments.

In addition, two different use cases were applied for 
each configuration, triggering the merging maneuver by 
the GVT as a function of the time to collision (TTC) be-
tween the VUT and the GVT once the merging maneuver 
by the GVT is completed (the time that the GVT needs to 
perform the lane change maneuver is fixed and known). 
The TTC means the remaining time before the VUT would 
strike the GVT, assuming that both the VUT and GVT 
would continue to travel with the speed they are travel-
ing. For the first case, a TTC = 0 s was used. That is, the 
GVT initiates the merging maneuver to supposedly end 

with its rear bumper in contact with 
the front bumper of the VUT if none 
of the vehicles modify their speed 
and assuming in this case a relative 
speed of 40 km/h. 

The second case was defined to 
be more challenging, with a TTC = 
−1.5 s (in this case, negative TTC 
values correspond to a post-collision 
situation). That is, the GVT starts 
the merging maneuver so as to sup-
posedly end it with a relative dis-
tance from the front bumper of the 
VUT to the rear bumper of the GVT 
of −16.67 m for a relative speed of 
40  km/h. In other words, the time 
that the VUT would have to react in 
this second case is 1.5 s less than in 

the first case. Both cases would result in a collision if the 
VUT took no action. By using the TTC between the VUT 
and the GVT at the end of the merging maneuver of the 
GVT, these scenarios can be easily adapted to different 
distances and speeds.

As already mentioned, the relative velocity between 
the VUT and the GVT is 40 km/h, emulating two vehicles 
driving on a highway at 120 km/h (VUT) and 80 km/h 
(GVT), respectively. On this occasion, the VUT checks the 
adjoining lane and determines that there is no oncom-
ing traffic. After that, the VUT proceeds to execute a lane 

Configuration 2: AES onto the Left Lane (TTC = 0 s; TTC = –1.5 s)

VUT

VUT GVT

50 km/h
10 km/h

GVT

FIG 11 Use case VEH-1 Configuration 2: overtake.

FIG 12 The vehicle dummy used in VEH use cases.

As can be observed, the VEH-2 intersection use case is totally 
new, having no equivalence in the Euro NCAP tests.
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change overtaking maneuver to leave plenty of room for 
the GVT to merge safely. The further the anticipation, the 
smoother the maneuver, and the larger the safety margin. 
This maneuver is denoted as AES.

Figure 13(a) shows the longitudinal distance between 
the VUT and GVT, in blue; the estimated distance (dashed); 
and the lateral offset, in orange, for TTC = −1.5 s (the most 
challenging conditions) using the baseline predictive sys-
tem based on a Kalman filter in use case VEH-1 Configu-
ration 2. Similarly, Figure 13(b) shows the same variables 
using the predictive system developed in BRAVE. Note the 
different scale in the time axis.

In this case, the reaction time of the baseline system 
is 1.2 s, while the reaction time of the BRAVE predictive 
system is 0.5 s. Under these demanding conditions, the 
difference of anticipation is 0.7 s in favor of BRAVE pre-
dictive system. This difference is to endow the system 
with additional reaction time. As a consequence, the pre-
dictive system allows us to achieve further comfort and 
safety. The BRAVE predictor leads to higher anticipation 
times systematically. The average lane change detection 
time achieved by the BRAVE predictor is 0.77 s (very simi-
lar to 0.65 s, the result achieved on video sequences after 
exhaustive testing). This is a bit more than 300 ms faster 
than the average reaction time of humans [43], which is 
around 1.08 s, and 800 ms faster than the average reaction 
time of the baseline predictive system based on Kalman 
filtering (1.56 s). Another relevant remark is the fact that 
the BRAVE vehicle scored full points on all use cases simi-
lar to the Euro NCAP tests.

VEH-2 Configuration 2: Turning at Intersections
Two different configurations were tested in this use case. 
Both configurations simulate a couple of vehicles, the VUT 

and the GVT, entering an intersection coming from per-
pendicular directions. In the first case, the GVT continues 
forward at the intersection, cutting the VUT trajectory. 
In such circumstances, the VUT must decelerate and ac-
commodate its speed to give way to the GVT. In the sec-
ond case, the GVT turns right at the intersection without 
interrupting the VUT trajectory at all. The VUT initially 
decreases its speed until it predicts the turning maneu-
ver of the GVT. In that moment, the VUT reference speed 
is resumed to the cruise value that it had before entering 
the intersection. This can be seen as a case of false posi-
tive detection, which, in this case, increases safety in an 
uncertain situation. Furthermore, the ability to anticipate 
the turn of the GVT allows optimizing the speed of the 
VUT at the intersection. False positive testing involves use 
cases where the GVT finally aborts the expected maneu-
ver. This use case is relevant given that it looks at evaluat-
ing systems that can improve the efficiency of traffic at 
intersections. The graphical description of this scenario is 
depicted in Figure 14.

The onboard sensors were used to detect the location 
of the GVT and the relative distance and velocity with re-
spect to the VUT. Figure 15(a) shows the positions of the 
VUT and GVT during the execution of a test with an ini-
tial VUT speed of 40 km/h. The closest distance between 
the VUT and the GVT during the test was again around 
4 m. Figure 15(b) shows the VUT reference and current 
speeds. As can be observed, the VUT reduces speed fol-
lowing a smooth pattern. The reduction of the VUT speed 
is not as big as it was in Configuration 1, given that the 
VUT eventually predicts the intention of the GVT to turn 
at the intersection. As soon as the intention is detected 
(around 2 s after starting to decrease speed, marked by an 
orange square), the VUT resumes its reference speed   until 
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 reaching the cruise speed it had be-
fore entering the intersection. Safety 
and comfort are once more the de-
sired variables to optimize.

This use case has been complete-
ly devised in this project, given that 
it corresponds to none of the use cas-
es considered by the Euro NCAP. The 
deployment of this use case allows 
us to issue some recommendations 
on how to define and execute this 
type of validation test in the Euro 
NCAP. The results achieved in these 
tests, in terms of safety gap and re-
action time (time needed to estimate 
the intention of the GVT since it en-
ters the intersection), set a baseline 

for further testing of more complex intersection use cases 
in the Euro NCAP.

Discussion
After addressing the technical descriptions of the tests per-
formed and the results obtained, this section discusses the 
main findings and the limitations encountered in testing 
the predictive systems. It also offers potential actions to be 
implemented in future test procedures. The proposed rec-
ommendations are classified according to their difficulty 
of implementation or time horizon.

Main Findings
After the thorough experimentation conducted at UTAC’s 
premises to test the predictive systems developed in the 
BRAVE project, the following findings can be remark -
ed upon.

 ■ In general, it can be safely stated that predictive systems 
provide added value in terms of safety (greater anticipa-
tion time and larger safety gap), efficiency, and comfort 
(smoother maneuvers with minimum jerk and minimal 
reduction of speed).

 ■ After extensive experimentation in a proving ground 
under standardized conditions, BRAVE’s predictive sys-
tems have been proven to outperform the state-of-the-
art vehicles tested at UTAC in the same use cases. As 
a matter of fact, UTAC, as an independent Euro NCAP 
tester, issued the following qualitative report compar-
ing the performance of the BRAVE vehicle and other ve-
hicles with similar capabilities tested on the same use 
cases [44]:

 ■ “The BRAVE vehicle tested scored full points on the 
accomplished tests. EuroNCAP protocols used to ob-
tain scores were written to assess AEB systems.

 ■ Comparison between the BRAVE vehicle and other 
manufacturers’ vehicles with Automated Driving 
(AD) functions:
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FIG 14 Use case VEH-2 Configuration 2: turning at intersection.
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 ● BRAVE vehicle is the best performing vehicle as far 
as relative distance with GVT is concerned for cut-
in use cases.

 ● BRAVE vehicle was the only vehicle able to avoid 
any collision fully autonomously for the cut-in 
−1.5s TTC use case.

 ● BRAVE vehicle behaves more smoothly than oth-
er vehicles.”

 ■ BRAVE’s predictive system overcomes humans’ predic-
tion ability on lane changes by 300 ms as well as the pre-
diction ability of the baseline predictive system (based 
on Kalman filtering) by 800 ms. Thus, it demonstrates 
the added value of AI-based prediction systems as an as-
set to achieve higher comfort and safety in automated 
driving, especially in critical scenarios, such as lane 
changing and merging maneuvers on highways.

 ■ BRAVE has proved the added value of prediction of 
intentions in pedestrian use cases by detecting in ad-
vance the pedestrian (dummy) face looking for eye con-
tact with the driver. The combined use of anticipated 
gaze detection and the activation of the GRAIL interface 
leads to smooth behavior, thus contributing to an en-
hanced feeling of comfort and respect both for pedestri-
ans and passengers of automated cars.

 ■ Last-second reactions have been improved (shortened) 
to increase the ability to deal with the most challenging 
conditions in pedestrian use cases, both in braking and 
avoidance scenarios. Predictive systems are useful in 
scenarios with high visibility (a pedestrian approach-
ing the curbstone in an open area while being fully 
visible from the car), but they provide no added value 
in extreme cases where the pedestrian is occluded (a 
pedestrian crossing the street while suddenly emerg-
ing from behind parked cars). In any case, safety was 
guaranteed, even in those challenging conditions.

 ■ The current predictive systems provide no added value 
in the cyclist use case, given that the cyclist is detected 
from a far distance and no abrupt cyclist’s maneuver 
or reaction is carried out. Although safety and comfort 
were guaranteed during the tests, more technologically 
advanced cyclist dummies that more accurately mimic 
real cyclists’ behavior would be needed to make the 
most out of the potential that predictive systems can of-
fer. These are some of the advanced dummy features 
that would be needed for such purpose: the cyclist rais-
ing his arm to signal a change of direction; the cyclist 
turning his head (as a clear indication of changing di-
rection); the cyclist leaning to the left or right; and vari-
able pedaling pace.

 ■ Intersection use cases involving two vehicles have 
been deployed successfully, proving the added value of 
prediction in false positive cases. However, further re-
search would be needed to deal with more complex use 
cases at intersections involving multiple vehicles.

Main Limitations
The main shortcomings identified in the current proce-
dures for testing prediction systems are described next. As 
illustrated in Figure 16, it is important to note that these 
limitations are interrelated and not mutually exclusive.

Limited Fidelity
Standardized tests are easy to carry out, but they do not re-
flect the behavior of road agents in a realistic manner since 
the movements of the robotized dummies are too rigid and 
linear. Consequently, they are easy to detect and predict. The 
aspect of the dummies and the GVT is also standardized, and 
thus, it is repetitive. Similarly, the testing scenarios are total-
ly open, without any objects in the background, making the 
test much easier from the perception point of view, whether 
based on vision, radar, or lidar. In addition, only one dummy 
(human or vehicle) is considered at a time during the tests, 
making the scenarios too simplistic compared to real driv-
ing situations (see Figure 17) and eliminating the possibility 
of including interactions between multiple agents.

Limited Variability
The tests are conducted under strict repetitive condi-
tions. Thus, there is little variability in the testing condi-
tions, which are limited to changes of velocity, TTC, and 
percentage of overlapping area at the point of impact. The 
potential variability of the appearance of human dummies 
(e.g., clothing, hair color, skin color, height, and so on) as 
well as of the dummy vehicle (e.g., color, size, and so on), or 
even of background conditions (e.g., cluttered background) 
is not sufficiently exploited. These strict repeatability re-
quirements can lead to tailored solutions that AI systems 
can easily learn.

Fidelity

Variability

Behaviors

Interactions

FIG 16 A Venn diagram illustrating the main identified weaknesses when 
testing predictive systems.
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Limited Behaviors
The dummies execute standard, preprogrammed behav-
iors that are limited to very basic actions, such as crossing, 
not crossing, and changing lane. There are no scenarios 
representing multiagent interactions. A larger variation of 
behaviors, including interactions, is needed for testing ad-
vanced predictive systems.

The Lack of Real Behaviors
Most of the systems that have been tested in this project are 
“last resort” solutions (i.e., electronic stability program, 
electronic braking system, antilock braking system), mean-
ing that the capability to provide mid- or long-term antici-
pation is not tested at all. In addition, the dummies do not 
perform any reaction as a consequence of the actions of the 
autonomous vehicle during the tests (e.g., the effect of exter-
nal HMI systems cannot be assessed). Thus, it is not possible 
to test the effect of the evaluated systems on other agents’ 
behavior. Advanced predictive systems should be tested on 
more realistic circumstances where real interactions be-
tween agents take place as a means to assess the real value 
that predictive capabilities can bring in this field.

The previously mentioned limitations impose constraints 
on the validation methods to assess the real potential of pre-
dictive systems in the context of automated driving. Howev-

er, the results obtained suggest that, even with the current 
certification context, predictive systems provide substantial 
benefits in terms of anticipation, safety, and comfort. In the 
following text, we propose some potential actions intended 
to pave the way forward in the near future.

Recommendations for Future Actions

Improving Fidelity
Regarding the dummies, we have identified several pos-
sible actions. A first proposal is to have robotized dum-
mies performing more realistic trajectories by adding 
probabilistic noise to the linear trajectories. Another 
possibility is to modify the baseline trajectories by mak-
ing them a bit more erratic and, consequently, much less 
linear and more realistic. A second proposal is to develop 
dummies that can perform more realistic movements, 
such as pedestrians bending their upper bodies forward 
before starting to walk, pedestrians turning their torsos, 
cyclists turning their heads toward oncoming traffic, or 
vehicles with robotized turn signals. A third proposal 
is to include multiple dummies in the testing scenarios 
so that autonomous vehicles have to reason about sev-
eral road users and their potential future movements 
and interactions. In terms of environments, any efforts to 

(a)

(b)

(c)

FIG 17 An illustration of the fidelity gap between the test and real scenarios. (a) The test environment. (b) The view from the vehicle. (c) Examples of real 
environments.
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provide more realistic environments (e.g., realistic urban 
scenarios, such as those used in the DARPA Urban Chal-
lenge [45]) would be beneficial to improve fidelity.

Improving Variability
The variability of the testing conditions can be largely 
increased by having the dummies performing different 
behaviors, apart from the standard crossing, not cross-
ing, and so on. Examples of such behaviors are: partially 
changing trajectory (direction and orientation), stop and 
go, variable velocity, acceleration profiles, and so on. The 
use of dummies with different conditions of clothing, hair, 
and skin color can also be interesting. It is important to 
maintain a tradeoff between repeatability and variability, 
but the trend in new certification processes includes test-
ing under real traffic conditions where repeatability can-
not be guaranteed in any case.

Finally, false positive testing is also necessary for each 
use case, i.e., an aborted cut-in or an emerging pedestrian 
who ultimately does not enter the crossing zone. Predictive 
systems must be able to predict both positive and negative 
cases and act accordingly.

Adding Real Behaviors and Interactions
The only way to test real interactions between road users 
and automated vehicles in a safe manner is to have real road 
users in a simulated environment where they can safely 
interact with automated vehicles that will be equipped 
with adaptive motion planning and HMI strategies based 
on predictive features. The benefits of using simulated en-
vironments with real road users in the loop are twofold. 
On the one hand, all variables and conditions can be fully 
controlled during the execution of the tests; on the other 
hand, the reactions of road users can be accurately mea-
sured, providing the means to assess the effect that the au-
tonomous vehicle’s actions cause on other agents. This will 
definitely open the gate to the development of autonomous 
vehicles with real interacting capabilities that will mimic 
or even surpass human driving abilities.

Conclusion
Physical tests conducted in controlled environments on 
test tracks are mainly developed to evaluate last-second 
reactions and do not allow changes in the trajectory or 
speed of the VUT until the last moment, even if the vehicle 
has anticipated the situation correctly, which drastically 
reduces the ability of advanced predictive systems to im-
prove safety and comfort. The conducted tests have proven 
that the developed advanced predictive systems have ac-
complished them increasing safety and comfort compared 
with basic systems, even with these limitations.

Current testing procedures present some limitations to 
assess the real potential of advanced predictive systems in 
real driving situations. These limitations are totally opened 

scenarios, interactions limited to a single element, the fixed 
and known appearance of the interacting element, strict 
repetitive conditions, the execution of preprogrammed 
trajectories, rigid body movements, and the impossibility 
of anticipating. Vision-based systems may be more under-
valued than radar- and lidar-based systems because they 
perceive more limitations.

After analyzing the aforementioned limitations, the abil-
ity to measure the actual performance of predictive systems 
can be potentially increased by randomizing experiments 
and adding probabilistic noise to the dummies’ linear tra-
jectories. The development of more realistic dummies can 
increase reality in actions, such as pedestrians bending or 
turning their torsos, cyclists turning their heads, or vehicles 
with robotized turn signals. Several interacting dummies 
need to be included in the tests to create more complex but 
essentially similar scenarios. 

Tests need to be improved in terms of variability by 
increasing the number of possible final situations, includ-
ing different behaviors, such as fully and partially devel-
oped or even aborted maneuvers, to correctly evaluate the 
goodness of the advanced predictive systems. Along the 
same line, it is necessary to implement non-last-second 
tests to improve safety and comfort by anticipating oncom-
ing events. Our future work is mainly focused on address-
ing the implementation of the proposals discussed in this 
article within the regulation and working groups of vari-
ous institutions, such as the Euro NCAP (e.g., AEBS and 
automated driving, occupant status monitoring, HMI), 
European Commission General Safety Regulation 2, and 
UNECE Validation Method for Automated Driving).  
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