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Abstract— In this paper, we propose a joint behavior and
motion planning agent based on DRL (Deep Reinforcement
Learning) intended for automated vehicles in a crowded merg-
ing scenario. The agent is trained using the PPO (Proximal
Policy Optimization) algorithm, a state-of-the-art solution that
ensures training stability and sample efficiency. We include
temporal information in the observation of our agent to improve
system stability. We have defined a simulated environment
using the CARLA (Car Learning to Act) simulator, which
handles the behavior of all other vehicles in the problem. We
have performed a comparison between our temporal approach
and a classic, distance-based one, both in terms of safety,
smoothness and comfort. Results show that our proposed agent
yields a smoother, safer experience, and prove the viability of
interweaving both systems within the same agent.

I. INTRODUCTION

Autonomous vehicles are expected to revolutionize the
transportation industry and the mobility in our cities, but their
successful deployment requires robust and reliable decision-
making systems capable of dealing with complex and chal-
lenging situations in the road environment. As a matter
of fact, in order to ensure that autonomous vehicles can
safely and efficiently operate in various scenarios, behavior
planning becomes a crucial aspect of their implementation,
where behavior planning refers to the process of deciding
the appropriate actions that an autonomous vehicle (AV)
should take in response to its surroundings. Some studies
have proposed rule-based methods, where decision-making
algorithms are developed based on a set of predefined rules.
For example, in [1] a rule-based approach is proposed for
controlling connected vehicles on unsignalized intersections.
Other studies have proposed Machine learning (ML) tech-
niques for behavior planning in autonomous vehicles given
the ability of artificial intelligence algorithms to learn from
data to make decisions. Examples of this are Imitation
Learning (IL) and Reinforcement Learning (RL), two of the
main branches of learning-based approaches that have been
successfully applied in the field of autonomous driving [20].

Imitation Learning, which aims at mimicking humans in
driving tasks, has been applied in AV control strategies
in some specific use cases, such as rural [8] and urban
driving scenarios [16]. However, given that IL learns from
human drivers (experts that provide the learning source) the
performance of the learned policies is asymptotically limited
and is extremely unlikely to surpass that of the experts.
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Fig. 1. Merging maneuver on crowded lane.

Reinforcement learning (RL) is gaining attention in be-
havior planning for autonomous vehicles given its ability to
adapt to complex and dynamic environments and its potential
to be scaled to many different types of driving situations.
Most research results have been achieved in simulation
by applying value-based RL algorithms, such as Deep Q-
Networks (DQN) to intersection scenarios [11] and highway
driving [12].

Some studies have trained an RL agent in a simulated
environment and then deployed the agent in a real vehicle
[5], and for a limited case, trained the agent directly in a real
vehicle [4]. Actor-critic RL algorithms with more complex
network structures have been developed and have achieved
better control performance in autonomous driving [6]. In
particular, state-of-the-art algorithms including soft actor-
critic (SAC) [10] and twin delayed DDPG (TD3) [9] have
been successfully implemented in AVs in many challenging
scenarios, such as complex urban driving and high-speed
drifting conditions.

Recent studies have also explored the combination of RL
and Model Predictive Control (MPC), a control strategy that
utilizes a model of the system to predict future behavior, in
behavior planning for autonomous vehicles. In [15], RL is
combined with MPC for building a decision making algo-



rithm intended for automated vehicles that have to negotiate
with other possibly non-automated vehicles in intersections.
The decision algorithm is separated into two parts: a high-
level decision module based on RL, and a low-level planning
module based on MPC. Similarly, the study by [18] combines
RL and MPC for on-ramp merging applications on highways.
The conclusion of this study is that the performance of the
RL agent is worse than that of the MPC solution from the
perspective of safety and robustness to out-of-distribution
traffic patterns, i.e., traffic patterns which were not seen by
the RL agent during training. Conversely, the performance of
the RL agent is usually better than that of the MPC solution
when it comes to efficiency and passenger comfort.

Although MPC has shown great potential in behavior
planning for autonomous vehicles due to its ability to handle
complex dynamics and constraints, a major limitation of
MPC is the high computational cost, something that hin-
ders real-time implementation. Similarly, RL has its own
limitations. A major one is the computational or learning
efficiency. As demonstrated in [14], model training consumes
a remarkable amount of computational resources and time.
The learning efficiency can be even worse when the reward
signal generated by the environment is sparse. Hence, the
design of the reward functions becomes another crucial and
critical point. An additional limitation that stems from the
combination of RL and MPC is the fact that two different
models are needed in a kind of hierarchical structure (RL in
the high-level and MPC in the low-level), thus contributing
to increasing the computational burden.

In this paper, we propose a behavior planning system for
autonomous driving tasks that is composed of a single RL-
based agent that handles behavior decisions by means of the
proper design of the reward function. Thus, optimal high-
level decision making and tactical control actions become
intertwined in a natural way as a consequence of the learning
process. The proposed agent has been developed using PPO
[7], an advanced policy gradient RL technique, and tested
on challenging ramp merging scenarios on highways using
the Carla simulator. Preliminary results indicate that a single
RL agent can simultaneously deal with behavior planning
and motion control in real time by leveraging a reward
function that accounts for safety and comfort in challenging
and complex driving scenarios learned from experience.

The rest of the paper is organized as follows: section
II provides the technical details of the proposed method;
section III describes the practical setup that has been used for
running the experiments; section IV presents the main results
achieved so far; finally, section V discusses the conclusions
and future research steps.

II. METHODOLOGY

A. Problem description

The system proposed in this work aims to solve the
merging maneuver in a safe and efficient manner, avoiding
crashes between the ego vehicle and any other at all costs. As
seen in figure 2, the simplest form of the merging problem
can be seen from a high-level standpoint as one of four

Fig. 2. Schematic representation of the merging maneuver.

choices: merge in front (1), merge between V1 and V2 (2),
merge between V2 and V3 (3), or merge at the back (4).
Once the high level process of choosing the destination
point of the maneuver is finished, the ego vehicle needs to
perform the corresponding low-level actions to achieve its
goal, which are comprised of control commands for the ego
vehicle. This kind of hierarchical distribution of choices is
implemented in [17]. Our system, however, aims to integrate
both processes within one architecture, by actuating over the
speed reference of the ego vehicle based on a predefined
observation. This interconnects the decision making aspect
of the behavior planning stage of autonomous driving with
the control actions that are performed by the ego vehicle.

However, the problem defined in figure 2 can get much
more complex in real world scenarios, in which the main
lane is crowded with several vehicles. We include such com-
plexity in our system, so that the system has to perform an
active choice on the merging slot that gives the best chances
of success. Thus, the agent now has a higher amount of
slots to merge into, which opens the possibility of including
other elements that affect the criterion that the system uses
to perform the maneuver.

B. Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a state-of-the-art
Deep Reinforcement Learning (DRL) presented by OpenAI
in 2017 [7]. PPO is of the policy gradient family, and it
uses stochastic gradient ascent (SGA) on an estimated policy
gradient to determine the update direction of the parameters
of the neural network that defines the policy of the agent.

It employs the concept of trust region, which guarantees
improvements by defining a safe search zone within the
parameter space by calculating the expected advantage of an
update with several approximations. The approximation error
is bound by restricting the difference between the policies
before and after updating. An in depth explanation of how
the algorithm works can be found on the article cited before.

PPO has been shown to increase sample efficiency, since
every iteration of the learning process is theoretically guar-
anteed to improve the q-value of any given state-action pair.
The approximations that allow the calculation of the trust
region in which the policy is guaranteed to improve eliminate
the certainty of improvement, but in practice the algorithm
has been applied to a wide array of domains with satisfying
results. Training stability is also improved by limiting policy
change with a clipping process of the surrogate objective



Fig. 3. Schematic representation of observation.

function that maximizes the advantage between the current
policy and the updated one, which reduces the perceived
improvement of policies that heavily diverge from the current
one, and therefore produces an incremental refinement of the
policy as the training goes on.

C. Reward function

The state space of the system includes the state of every
vehicle in the simulated world, that is, all positions, velocities
and accelerations, both linear and angular, of every actor in
the simulation. However, the state of the system is refined
into the following vector:

O = [∆t1, ∆t1, . . . , ∆tN , ∆tN+1, vego, v1, . . . vN ] (1)

Where ∆ti represents the time differential of point i, i.e.
each of the merging points defined as the mid-point between
vehicles on the main lane, and vj denotes the speed of vehicle
j, and N represents the number of vehicles in the simulation
other than the ego vehicle. In our experiments, we have set
N = 10, which brings the total of cars in the simulation to
11.

The time differential is calculated as follows:

∆ti = ∆tego −∆tpi (2)

∆tpi
=

di + di+1

vi + vi+1
(3)

where di denotes the distance between point i and the desti-
nation point, and vi represents the velocity with which point i
advances. Both the distance and speed of all possible merging
points are calculated as the mean of the two surrounding
vehicles. When dealing with points (1) and (4), a vehicle is
assumed to be leading (trailing) 30 m ahead (behind) and
with the same speed as the one being considered.

With this observation vector we provide temporal infor-
mation to the agent, which has the task of minimizing the
time differential for any of the points that are available for
merging.

The reward function is defined as follows:

r = w1 · rcollision + w2 · rvego + w3 ·
N∑
i=1

rpi
(4)

where wi represents the weight given to any particular term
of the definition. We set w = [1000, 2, 1], to heavily penalize
collisions and modulate the speed term so that its effect is
not overshadowed by the time differentials rewards.

The first term penalizes collisions between the ego vehicle
and any other car and is defined as:

rcollision =

{
−1 if collision
0 else

The second term penalizes slow speeds for the ego vehicle
and is used as a deterrent for the vehicle to allow the convoy
that drives through the main lane to pass and then complete
the maneuver. It also promotes the ego vehicle to maintain
its speed within the range defined by vmin and vmax. In our
tests, we set vmin to 8m/s and vmax to 12m/s. It is obtained
with the following definition:

rvego =

{ vego−vmin

vmax−vmin
if vego < vmax

−1 if vego > vmax

The third term of the reward function aims to minimize
the time differentials according to the next expression:

rpi
=

1

|∆ti|
· wi (5)

where wi denotes the weight associated to spot i, and serves
as a modulator of the frequency with which said spot will
be chosen by the agent. On our tests, those weights were set
to 0.1 for the first and last slots, and 1 for all others. rpi is
clipped between 0 and 5 to prevent the reward value from
exploding when the time differences are small.

III. RESULTS AND DISCUSSION

A. Simulation environment

The environment in which the DRL agent will be trained
derives from CARLA [3], a well-known simulation suite
that allows for realistic and accurate traffic simulations. We
have developed an OpenAI’s Gym [2] custom environment
that wraps the CARLA client into a package that can be
interconnected with several established DRL libraries such
as Stable Baselines3 [19], in which the PPO instance that
was trained for this work is implemented.

The simulation has a period of 50ms, which is also the
control period for the underlying low level controllers that
perform direct control actions (i.e. steer and pedal actuation).
These PID controllers are managed by CARLA’s Traffic
Manager module, and take as reference the location of the
goal and the action of the PPO agent. The decision period
is set to 1 s, so that the controller has time to react to a
sustained reference.

Figure 1 shows the interconnection of the RL agent and
the modules that perform both low level actions and data
acquisition from the world. The simulation sends the state of
every car to the agent, which refines the information into an
observation. This observation is used to calculate the action
that the agent will take, which is then sent to the Traffic
Manager module to manage the low level actions of both
the ego vehicle and the vehicles on the main lane.



TABLE I
STATISTICAL PARAMETERS OF THE BEHAVIOUR OF THE EGO VEHICLE.

Measurement Temporal reward function Spatial reward function
Collision rate - 500 episodes (%) 17.82 28.71

Mean of 95 percentile of jerk (m/s3) 2.02 6.18
Mean of max jerk (m/s3) 3.48 10.52

Mean of 95 percentile of acceleration (m/s2) 2.39 2.45
Mean time of episode completion (s) 22.45 16.49

Fig. 4. Evolution of reward during training of temporal RL Agent.

B. Results

Figure 4 shows the evolution of the reward signal during
the 50000 steps of training of the temporal agent. The result
denotes the ability of the PPO agent to learn to maximize
rewards in terms of both the speed and time differential
terms. The graph also shows how the system learns to
avoid collisions until the collision rate is reduced, but not
completely eliminated. Further training has not improved
collision rate, and shows signs of overfitting, in which the
ego vehicle learns to accelerate up to a constant value of
speed and maintain it regardless of any other stimuli in the
reward function.

Table I shows a statistical comparison of a 100 episode
run between the agent proposed in this work and one trained
with the reward function defined in [13], trained on a PPO
agent with the same configuration as the one shown here. As
inferred from the statistical parameters, our agent has a re-
duced collision rate, mainly due to the inclusion of collision
information on our reward function. The one implemented
in the spatial agent relies on keeping the ego vehicle away
of the other vehicles present on the simulation by penalizing
close distances, but has no sense of collision, which prevents
the agent from discerning between situations in which the
maneuver is successful or the ego vehicle is too close to

one vehicle and far from other. However, further studies are
required to assess the viability of improving the collision
rate of the temporal agent, either with a modified reward
function that includes both spatial and temporal terms, or by
designing a complementary system that identifies potential
high-risk situations and modulates the action of the agent
accordingly to better evade lateral or frontal collisions.

Jerk distribution tests considerably smoother with the
temporal agent. As seen in table I, the mean of the 95th
percentile across the 100 episode run falls close to acceptable
limits in non steady-state maneuvers. Despite the system
not having a sense of rate of change of either its output
or the observations, it has learned a behavior that adapts to
the other vehicles in the road, which have either constant
or monotonous profile speeds. This allows the system to
modulate its dynamics so that they become somewhat smooth
inherently. However, even when including terms in its reward
function that penalize large accelerations, the spatial agent
exhibits greater values of both jerk and acceleration.

The only parameter in which the spatial agent has an
advantage over the temporal one is swiftness in the comple-
tion of the maneuver; it is almost 6 seconds faster than its
counterpart, which can be seen as a potential safety benefit
since by taking less time to complete the maneuver there is a
reduced chance of any risk hazard to materialize. However,
if all other parameters are factored in –particularly collision
rate and max jerk–, it is clear that this improvement in time
comes at the cost of both actual and perceived safety, given
the fact that this agent produces more collisions and the
overall experience presents a much more jittery behavior.

Figure 5a) depicts the typical behavior of the temporal
agent. At the beginning of the episode, it accelerates up to
the lane’s speed –configured to be 8m/s, and maintains that
velocity until it detects a potential conflict with vehicle 06.
The agent engages then in a modulation phase, in which it
reacts to the changes in velocity of said vehicle to ensure that
it will reach the merging point avoiding any hazards. In the
final phase of the maneuver, the agent modulates the speed
of the ego vehicle yet again to prevent it from merging too
close to either vehicle 05 or 06. The agent ends the maneuver
with an acceleration stage to adequate the speed of the ego
vehicle to that of the main lane so that it can avoid a rear
collision. The agent shows a small amount of ripple in the
velocity signal, mostly due to noise in the low-level controller
that executes the throttle and brake commands to follow the
reference that our agent outputs.

This episode proves the temporal approach’s success when
refining the problem’s state into an observation to feed into



Fig. 5. Evaluation of an episode. a) Temporal agent. b) Spatial agent.

the RL agent. By processing the state into time differentials
of merging slots, the system obtains a sense of avoidance of
other vehicles, which is further accentuated by the collision
term in the reward function. Moreover, the behavior planning
section of our implementation shows promising performance,
as it allows the agent to modulate its actions and adapt to
road conditions.

Side b) of figure 5 includes an evaluation run of the
spatial agent. It can be seen from the bottom subfigure that
its behavior is much more aggressive than the temporal
one, with higher values of speed, jerk and acceleration.
Furthermore, there are barely any instants in which the agent
maintains a stable velocity, and it shows no sign of adapting
to the conditions of the main road. In a configuration
considerably simpler than the one studied for the temporal
agent –particularly in how vehicle 06 modulates its velocity–,
the one with spatial information performs worse, completing
the maneuver but with clearly unsafe parameters. In addition,
even though the reward function was configured to prioritize
merging in the mid-point between two reference cars, the
agent does not manage to regulate its action to achieve this
safety objective.

Another point of contention between the two agents refers
to the information each of them employ to make the decision
for the merging slot. While the temporal agent includes
information about all the vehicles on the road, interwoven
in the mid-point calculations that occur before the agent
receives the observation, the spatial agent gets information
only about its two closest vehicles. This reduces the adapt-
ability of the system, since its observation only recognizes
distances and velocities of the surrounding vehicles and it
is unable to identify other potential better merging slots.
The temporal agent requires more computational overhead

to process all the information it receives from the world,
and could potentially be at a disadvantage in scenarios with
a large number of cars, but the trade-off in adaptability,
smoothness and safety falls in its favour.

IV. CONCLUSIONS AND FUTURE WORKS

In this work, a PPO DRL agent has been trained to solve
a merging maneuver in a crowded environment. The agent
has been trained with a temporal based reward function, and
a comparison has been carried out against a similar agent,
trained with spatial information in its reward function.

Several conclusions can be extracted from the results
discussed in the previous section. Chief among them is the
viability of a combined architecture with both behavior and
motion planning in a single system. It has been shown that
such an agent can safely and timely complete the maneuver
without a noticeable increase in system complexity, training
cost or computation time.

Furthermore, we have proved how the inclusion of tem-
poral information in the form of time differentials to the
merging slots improves the stability and adaptability of the
system while allowing the system to modulate its behaviour
to that of the vehicles on the main road. In addition, it
appears that, even without explicit terms to regulate the
behavior in terms of acceleration and jerk, the system has
learned to actuate in such a way that the experience inside the
ego vehicle will not be perceived as unsafe or uncomfortable.
We have also shown how including information on collisions
in the reward function reduces the collision rate.

Several lines of research stem from the results shown
in this work. The most important one is the extension
of the intertwined proposed architecture to other complex
scenarios, such as crowded highway cruising, roundabouts



or t-junctions. It is our belief that such an approach can
be highly beneficial both in training ease, computational
cost and performance. In this line, an all-in-one system,
which integrates behavior and motion planning and low-level
control could be worth studying to determine the incremental
gains of implementing problem-wide systems.

We also propose a testing scenario in which the ego
vehicle faces human drivers in a merging maneuver, instead
of simulated agents. By performing the most intensive part
of training in a computer-controlled setting and then adding
human actors to the environment via driving simulation
equipment we hope to achieve better performance in real
world tasks, without having to invest in a large amount of
human hours in the simulation.
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