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Abstract— The continuous expanding scale of WiFi deploy-
ments in metropolitan areas has made possible to find WiFi
access points at almost any place in our cities. Although WiFi
has been mainly used for indoor localisation, there is a growing
number of research in outdoor WiFi-based localisation. This
paper presents a WiFi-based localisation system that takes
advantage of the huge deployment of WiFi networks in urban
areas. The idea is to complement localisation in zones where
the GPS coverage is low, such as urban canyons. The proposed
method explores the CNNs ability to handle large amounts of
data and their high accuracy with reasonable computational
costs. The final objective is to develop a system able to handle
the large number of access points present in urban areas
while preserving high accuracy and real time requirements.
The system was tested in a urban environment, improving the
accuracy with respect to the state-of-the-art and being able to
work in real time.

I. INTRODUCTION

Self driving cars research has ushered in a great develop-
ment in a number of areas, being localisation one of the most
outstanding ones. Major car makers are investing significant
efforts on accurate maps building for automated driving
purposes. Those maps usually contain enriched information
regarding the geometrical configuration of the environment
and any other salient feature that can help on the localisation
process using vision [1] or LiDAR [2] [3].

Regarding automated driving, there is a debate in the
scientific community about the trade-off between local per-
ception capability and map dependence. However, map-based
localisation is still a crucial and necessary element in today’s
automated driving systems.

Although WiFi has been mainly used for indoor localisa-
tion, in last few years, the number and quality of the research
in outdoor WiFi-based localisation has been continuously
growing. The continuous expanding scale of WiFi deploy-
ments in metropolitan areas has made possible to perform
accurate GPS-free localisation solely based on the existing
WiFi infrastructure [4]. In addition, some new crowdsensing
projects allow for a collaborative mapping of metropolitan
areas reducing the traditionally big survey effort [5].

In this paper, we present a preliminary work for WiFi-
based urban localisation using CNNs (Convolutional Neural
Networks) (Fig. 1). This paper is a natural evolution of
our previous work [6] in which we developed a contin-
uous space estimator (CSE) with mean localisation errors
under 4 m using the Received Signal Strength (RSS) from
WiFi APs (Access Points). This continuous space estimator
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used an SVR (Support Vector Regression) [7] algorithm to
estimate virtual fingerprints not available in the fingerprint
database, thus reducing the site survey effort. However, the
computational cost of searching for the best position along
the estimated surfaces was very high (∼ 200s per sample)
making it impossible for a real time application. In this paper,
we want to explore the CNNs ability to deal with huge
amounts of data and extend our previous system to WiFi-
based urban localisation able to complement autonomous
driving map-based localisation.

Fig. 1. WiFi-based urban localisation.

In the future, we plan to include this WiFi information
in our enriched 3D map [8] to help with the localisation in
urban canyons where the GPS coverage is low (Fig. 2).

Fig. 2. 3D enriched map [8].

The remainder of the paper is organised as follows:
Section II introduces the state-of-the-art, in Section III the
proposed localisation algorithm is described. Section IV
analyses the experimental results. Finally, Section V presents
the conclusions and future work.
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Fig. 3. Proposed CNN architecture based on ResNet bottleneck units.

II. RELATED WORK

WiFi is one of the most widely used technologies for
indoor localisation where it has been proved accurate and
reliable. However, some recent work [4], [9] propose the use
of WiFi for outdoor localisation. This new line of research
is motivated by the low performance of the GPS in urban
canyons and the high cost of differential GPSs.

Both indoor and outdoor WiFi localisation is usually
approached in two different ways: using range-based (prop-
agation model-based) methods or using fingerprinting-based
methods.

On the one hand, range-based methods [10], [11] take
advantage of the way the signal is propagated over the
environment, being able to transform the RSS from an AP
into a distance to that AP. These methods have the advantage
of being quick to implement, requiring low maintenance and
being valid under any circumstances. Their main disadvan-
tage is the need of knowing the exact location of all the
APs. This location is used to apply lateration algorithms to
estimate the real position of the device. Another disadvantage
is the need of Line-Of-Sight (LOS) conditions to obtain high
localisation accuracy.

On the other hand, fingerprint-based localisation methods
[12], [13], [14], [15] follow a two-stages approach: a training
stage and a localisation stage. During the training stage, the
environment is divided in cells and the RSS from all the
visible APs is collected from each one of them. Then, during
the localisation stage, new measurements are compared with
the stored ones (usually through classification algorithms) to
estimate the position of the device. The main advantage of
these methods is that once the system is trained, they faith-
fully represent the RSS on the different cells, obtaining high
localisation accuracy. Their main disadvantage is the need
of site-surveying the environment and the high maintenance
costs.

When analysing the main characteristics of these methods,
it can be noted that obtaining the exact location of the APs on
an urban environment is not feasible: APs are mainly located
inside private residential buildings. For the same reason, LOS
conditions can not be achieved. As a consequence, it is very
difficult to obtain high outdoor localisation accuracy using
range-based methods. That lead us to select fingerprint-based

methods, even though they require a high site-survey effort.
Recent projects, such as Radiocells.org [5], have proposed

to collect crowd-sourced RSS data making it publicly avail-
able. Even though Spain region is not currently exhaustively
covered, we believe that in the near future this kind of
public databases will grow, making it easier to implement
fingerprint-based localisation methods in wider urban areas.
In addition, some methods as the author’s previous work
[6] seek to reduce the site-survey effort by using regression
algorithms to generate “virtual” fingerprints. This method
has been tested in a medium-size environment obtaining low
localisation errors at the cost of a high computational time
(localisation in an environment around 2500 m2 with 100
APs takes 42.4 seconds per request).

When looking for a new localisation system for au-
tonomous vehicles, two of the most important characteristics,
besides obtaining a low localisation error, is that it must
be available for large areas and work in real time, so the
previously proposed system can not be used to that end.
That is the reason why in this paper we want to explore
a new localisation method based on CNNs known by their
high performance, ability to handle large amounts of data
and reasonable computational costs.

III. URBAN WIFI LOCALISATION

In this paper, we propose a CNN-based localisation system
using RSS fingerprints collected from the available WiFi
APs. Given that CNNs are designed to work with images, in
the training stage the collected images must be transformed
as will be exposed in Section III-C. Then, during the local-
isation stage the trained CNN will be used to estimate the
vehicle position using WiFi RSS measurements collected on-
line.

A. CNN description

There are a huge amount of CNN models for the task
of classification/prediction. Some of the most significant
ones are AlexNet [16], VGG [17], GoogLeNet [18] or
ResNet [19]. All this models have in common that they were
designed with Imagenet [20] in mind, a large scale dataset
with 1000 different classes. Using one of these deep models
could lead us to overfitting, not to mention the enormous
computational cost and time required.
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In this work, we propose a custom CNN based on ResNet
bottleneck units, to take advantage of its efficiency and
accuracy. Our CNN is formed by 4 convolutional layers,
each one followed by a batch normalisation layer to end
with a fully connected layer. The full architecture is shown in
Fig. 3. Net weights are initialised with a normal distribution
N (0, 0.01). Finally, the system is trained for 20 epochs.

B. Data Collection
The experiments took place at Alcalá de Henares (Madrid,

Spain), covering 27000m2 on a urban area of the city centre.
This is an urban canyon characterised by a low coverage
of GPS signal and a high number of WiFi APs, being all
of them deployed by the residents. We have no information
about their exact locations or configurations.

The WiFi measurements were collected at 16 evenly
distributed locations, approximately 50 m apart (Fig. 4). The
measurements were collected on three different runs (train,
validation and test), at least three days apart from each other
using our automated vehicle (DRIVERTIVE) [21] (Fig. 5).

Fig. 4. Experimental environment located in a residential area of Alcalá de
Henares (Madrid): Measurement locations are represented with blue circles
numbered from 1 to 16.

Fig. 5. DRIVERTIVE vehicle.

Two WiFi interfaces were used to collect the data: an
external WiFi antenna mounted on the roof of the car and an

embedded WiFi interface of a Toshiba laptop located inside
the car. The reason for this was to compare performance
when the antenna was located inside or outside the car.

Both antennas are configured to collect data on the
2.4 GHz frequency band, ranging from -99 dBm with a
resolution of 1 dBm. The acquisition frequency was 1 Hz for
the Toshiba interface and 0.5 Hz for the external device.

At each position, 60 and 30 samples were collected for the
Toshiba and the external interface respectively. This way, the
time required to collect the data from both interfaces was the
same. Each one of the datasets (train, validation and test) are
thus composed of 960 samples for the Toshiba interface and
480 for the external device.

C. Data pre-processing

Before we can train our CNN we have to adapt the
measured RSS to a format that fit its architecture. Each RSS
from an AP has to be pre-processed as shown in Fig. 6.
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Fig. 6. Collecting and pre-processing data to convert RSS samples into
images.

First, each RSS sample is shaped into a square image. To
do so, APs order will be arbitrarily selected. Then, the data
for each sample will be re-arranged into an Y by Y square
image following the selected order, with

Y =
⌈√

NAP

⌉
(1)

being NAP the number of APs seen during the data collec-
tion.

In addition, measured RSS must be transformed into pixel
intensity values (i.e. from 0 to 255). This transformation is
performed by adding an offset to the RSS. Given that the
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collected RSS ranges from -99 dBm to -50 dBm, we have
selected the offset to be +200, resulting in medium-ranged
image intensity values (101 to 150). Also, when there is no
available RSS from an AP, the corresponding pixel intensity
will be set to 0, allowing for high differentiation between
non-seen APs and low RSS APs. When the total number of
APs is not a perfect square, some empty pixels have to be
added in order to create a square image. These pixels are
also set to 0.

In the experiments, 536 APs were detected using the
Toshiba interface and 596 using the external interface. This
way, the images for the Toshiba dataset will be square images
of 24 × 24 pixels and for the external interface of 25 × 25
pixels. Fig. 7 shows some examples of the images used to
train, validate and test the CNN.

(a) Pos 1 - Train (b) Pos 1 - Validation (c) Pos 1 - Test

(d) Pos 5 - Train (e) Pos 5 - Validation (f) Pos 5 - Test

(g) Pos 13 - Train (h) Pos 13 - Validation (i) Pos 13 - Test

Fig. 7. Example of training, validation and test Toshiba interface images.

These images can be interpreted as heat map images,
in which each pixel brightness represents the RSS from a
different AP collected at a certain position. The lighter the
pixel, the higher the RSS from the AP.

IV. SYSTEM EVALUATION

This section describes the experimental results obtained
using the CNN as described in the previous section. After
the off-line training and validation of the CNN, the system
is tested using the third dataset which contains unseen data.

Tables I and II show the accuracy and mean error of
the proposed system compared with two state-of-the-art
methods.

Firstly, RADAR [12] which uses K-Nearest Neighbours
(KNN) [22] and is a commonly used baseline to compare
WiFi localisation methods [13], [23].

Secondly, Jedari et. al [24] method, which uses Random
Forest (RF), a classification algorithm recognised by its high
accuracy when used for localisation systems. Both methods
were implemented using the KNN and RF algorithm versions
provided by the data mining tool Weka [25], [26].

As can be seen in the results, the accuracy is higher
than 93% independently of the method. This is an expected
behaviour, as the positions are not very close to each other
(minimum of 35 m). Even in this case, it can be seen that the
proposed CNN improves the localisation accuracy, reaching
a 100% using the Toshiba laptop interface and 98.69%
using the external interface which lead us to think that
the system has room for improvement in more challenging
environments. The mean localisation error is also reduced for
both interfaces, specially when compared with the RADAR
system.

It is worth noticing that, despite the 100% of accuracy,
train and test datasets were collected one week apart in time,
thus ruling out the possibility of overlearning.

TABLE I
SUMMARY OF THE RESULTS - ACCURACY

Method
Accuracy (%)

Toshiba interface External interface

CNN 100% 98.69%

RADAR [12] 95.34% 93.23%

RF [24] 96.51% 96.28%

TABLE II
SUMMARY OF THE RESULTS - MEAN ERROR

Method
Mean error (m)

Toshiba interface External interface

CNN 0 m 1.02 m

RADAR [12] 4.29 m 2.92 m

RF [24] 1.75 m 1.74 m

Table III shows the training and test times. Note that the
times are different depending on the interface used because
both, the number of detected APs and the number of samples
is different for each one of them (536 APs and 960 samples
using the Toshiba interface and 596 APs and 480 samples
using the external interface). This results in a different
number of input features for the classifiers (or different size
of images for the CNN) and a different number of input
samples to train the system depending of the number of
collected samples. The training times include training and
validation over the complete datasets (960 or 480 samples)
while test times are per sample (one location estimation).

CNN and RF training times do not significantly vary with
the interfaces, but testing times doubles for the external inter-
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face because the number of APs seen is higher (which means
bigger feature vectors for the RF and bigger images for the
CNN). RADAR system is highly dependent on the number
of samples because it compares the new samples with all
the stored ones. So, an increase on the number of inputs
or the number of samples increases the computational time.
However, for this environment, the real time requirements are
met using any of the tested systems since each location esti-
mation time is lower than the measuring frequency (1 second
or 2 seconds for 1 Hz or 0.5 Hz interfaces respectively). If we
extend these systems to wider environments, and assuming
equal APs density, RADAR and RF will be highly penalised
in their testing times while the CNN solution will remain
unaffected.

The proposed system obtains high accuracy being able
to run on real time for a big environment (27000 m2

with more than 500 APs), which is an improvement when
compared with the previously proposed method which needs
220 seconds per location request in this scenario.

TABLE III
SUMMARY OF THE RESULTS - TRAINING AND TEST TIMES

Method

Time (ms)

Toshiba interface External interface

Train Test Train Test

CNN 1293 ms 7.184 ms 1260 ms 14.541 ms

RADAR [12] 21596 ms 13.284 ms 6932 ms 9.802 ms

RF [24] 3562 ms 1.210 ms 2532 ms 2.158 ms

Finally, Fig. 8 shows the confusion matrices for both
interfaces. It details the predicted positions by the system
related to the groundtruth (the positions where the vehicle
really was). As can be seen, most of the localisation errors
occur within neighbour locations, especially using the CNN.

V. CONCLUSIONS AND FUTURE WORK

This work has presented a preliminary proposal to estimate
the location of an autonomous vehicle using the measure-
ments collected using only the RSS from a WiFi interface by
means of a CNN. To do so, the proposed system transforms
the RSS samples into square images to take advantage of the
good performance of CNNs. The final goal is to apply this
system to a continuous space estimator (CSE) and reduce its
computational cost.

The proposal was tested in an urban environment under
real traffic conditions, improving the accuracy with respect
to state-of-the-art methods and being able to work in real
time. During the experimentation we have found that urban
areas have enough WiFi APs to provide with accurate and
reliable outdoor localisation.

In the future, we plan to include WiFi localisation in-
formation into enriched 3D maps for automated driving to
support the localisation process. In addition, the previously
proposed WiFi localisation system [6] (CSE) will be used
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(a) CNN - Toshiba
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(c) RADAR [12] - Toshiba
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(d) RADAR [12] - External
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(e) RF [24] - Toshiba
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(f) RF [24] - External

Fig. 8. Confusion matrix.

to generate “virtual” positions that will be used to train
the CNN obtaining more dense environments. This way, we
expect to increase the accuracy while maintaining the real
time requirements.

Finally, we plan to test the system on wider environ-
ments using crowdsensing available databases such as Ra-
diocells.org [5].
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C. Knöppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke,
M. Ghanaat, M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein, and
E. Zeeb, “Making Bertha drive - An autonomous journey on a historic

1274



route,” IEEE Intelligent Transportation Systems Magazine, vol. 6,
no. 2, pp. 8–20, Summer 2014.

[2] “Google self-driving car project,” accessed on April 2019. [Online].
Available: https://www.google.com/selfdrivingcar/

[3] S. Kim, G. Gwon, W. Hur, D. Hyeon, D. Kim, S. Kim, D. Kye, S. Lee,
S. Lee, M. Shin, and S. Seo, “Autonomous campus mobility services
using driverless taxi,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 12, pp. 3513–3526, Dec 2017.

[4] J. Wang, N. Tan, J. Luo, and S. J. Pan, “WOLoc: WiFi-only outdoor
localization using crowdsensed hotspot labels,” in IEEE INFOCOM
2017 - IEEE Conference on Computer Communications, 2017, pp.
1–9.

[5] Radiocells.org, “Community project to collect information on cell
tower and WiFi base stations,” 2009, accessed on April 2019.
[Online]. Available: https://radiocells.org/

[6] N. Hernández, M. Ocaña, J. M. Alonso, and E. Kim, “Continuous
space estimation: Increasing WiFi-based indoor localization resolution
without increasing the site-survey effort,” Sensors, vol. 17 (1), no. 147,
pp. 1–23, 2017.

[7] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” Advances in Neural Information
Processing Systems, vol. 9, no. 9, pp. 155–161, 1997.

[8] N. Hernández, I. G. Daza, C. Salinas, I. Parra, J. Alonso, D. F. Llorca,
and M. A. Sotelo, “Intelligent feature selection method for accurate
laser-based mapping and localisation in self-driving cars,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 1–6.

[9] N. Hernández, A. Hussein, D. Cruzado, I. Parra, and J. M. Armingol,
“Applying low cost WiFi-based localization to in-campus autonomous
vehicles,” in 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), 2017, pp. 1–6.

[10] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan,
“Indoor localization without the pain,” in Proceedings of the Annual
International Conference on Mobile Computing and Networking, 2010,
pp. 173–184.

[11] J. Yang, H. Lee, and K. Moessner, “Multilateration localization based
on singular value decomposition for 3D indoor positioning,” in Pro-
ceedings of the 2016 International Conference on Indoor Positioning
and Indoor Navigation, 2016, pp. 1–8.

[12] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in Proceedings of the Annual Joint
Conference of the IEEE Computer and Communications Societies,
2000, pp. 775–784.

[13] M. Youssef and A. Agrawala, “The Horus location determination
system,” Wireless Networks, vol. 14, no. 3, pp. 357–374, 2008.

[14] W. Li, D. Wei, H. Yuan, and G. Ouyang, “A novel method of WiFi
fingerprint positioning using spatial multi-points matching,” in Pro-

ceedings of the 2016 International Conference on Indoor Positioning
and Indoor Navigation, 2016, pp. 1–8.

[15] J. Kim and D. Han, “Passive WiFi fingerprinting method,” in 2018
International Conference on Indoor Positioning and Indoor Navigation
(IPIN), 2018, pp. 1–8.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds., 2012, pp. 1097–1105.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 1–9.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “Imagenet large scale visual recognition challenge,” Inter-
national Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,
Dec 2015.

[21] I. Parra, R. Izquierdo, J. Alonso, A. Garcı́a-Morcillo, D. Fernández-
Llorca, and M. A. Sotelo, “The experience of DRIVERTIVE -
DRIVERless cooperaTIve VEhicle-Team in the 2016 GCDC,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 4, pp.
1322–1334, 2018.

[22] D. Kibler and D. Aha, “Learning representative exemplars of concepts:
An initial case study,” in Proceedings of the International Workshop
on Machine Learning, 1987, pp. 24–30.

[23] B.-F. Wu, C.-L. Jen, and K.-C. Chang, “Neural fuzzy based indoor
localization by Kalman filtering with propagation channel modeling,”
in Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics, 2007, pp. 812–817.

[24] E. Jedari, Z. Wu, R. Rashidzadeh, and M. Saif, “Wi-Fi based indoor
location positioning employing random forest classifier,” in Proceed-
ings of the 2015 International Conference on Indoor Positioning and
Indoor Navigation, 2015, pp. 1–5.

[25] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: An update,” SIGKDD
Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[26] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical
machine learning tools and techniques, 3rd ed., ser. Data Management
Systems Series. Morgan Kaufmann, 2011.

Figure 1 is based on a design by macrovector / Freepik.

1275


