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Abstract— The traditional simulation methods present some
limitations, such as the reality gap between simulated experi-
ences and real-world performance. In the field of autonomous
driving research, we propose the handling of an immersive
virtual reality system for pedestrians to include in simulations
real behaviors of agents that interact with the simulated
environment in real time, to improve the quality of the virtual-
world data and reduce the gap.

In this paper we employ a digital twin to replicate a study
on communication interfaces between autonomous vehicles
and pedestrians, generating an equivalent virtual scenario to
compare the results and establish qualitative and quantitative
measurements of the discrepancy. The goal is to evaluate the
effectiveness and acceptability of implicit and explicit forms of
communication in both scenarios and to verify that the behavior
carried out by the pedestrian inside the simulator through a
virtual reality interface is directly comparable with their role
performed in a real traffic situation.

I. INTRODUCTION

As autonomous vehicle technology advances, the need
for rapid prototyping and extensive testing is becoming
increasingly important, as real driving tests alone are not
sufficient to demonstrate safety [1]. The use of physics-
based simulations allows the study of various scenarios and
conditions at a fraction of the cost and risk of physical pro-
totype testing, providing valuable insights into the behaviour
and performance of autonomous vehicles in a controlled
environment [2].

However, one of the main challenges in the development
of autonomous driving digital twins is the lack of realism of
simulated sensor data and physical models. The so-called
reality gap can lead to inaccuracies because the virtual
world does not adequately generalise all the variations and
complexities of the real world [3], [4]. Furthermore, despite
attempts to generate realistic synthetic behaviours of other
road agents (e.g., vehicles, pedestrians, cyclists), simulation
lacks empirical knowledge about their behaviour, which neg-
atively affects the gap in behaviour and motion prediction,
communication, and human-vehicle interaction [5].

Including behaviours and interactions from real agents
in simulators is one way to reduce the reality gap of
autonomous driving digital twins. This can be addressed by
using real-time immersive virtual reality [6]. The immersive
integration of real subjects into digital twins allows, on
the one hand, human-vehicle interaction studies in fully
controlled and safe environments. It allows to include various
human-machine interface (HMI) modalities and to explore
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Henares, Spain. sergio.martin@uah.es

2European Commission, Joint Research Centre, Seville, Spain.

Fig. 1. Digital twin for human-vehicle interaction in autonomous driving,
a comparison between virtual (above) and real (bottom) experiments.

extreme scenarios without risk to people and vehicle pro-
totypes. On the other hand, it makes it possible to obtain
synthetic sequences from multiple viewpoints (i.e., simulated
sensors of autonomous vehicles) based on the behaviour of
real subjects, which can be used to train and test predictive
perception models. However, this approach would only be
valid if the behaviour of the subjects in the simulated
environment is equivalent to their behaviour in a real envi-
ronment. This is called the behavioural gap, and in order to
model it, it is necessary to empirically evaluate the behaviour
of the subjects in both real and simulated conditions.

In our previous work [6], we presented a framework to
enable real-time interaction between real agents and CARLA
simulator using immersive virtual reality and human motion
capture systems. In this paper, we present the application of
this framework to develop a digital twin of a real scenario,
and replicate the field experiments carried out in real-world
driving conditions [7] (see Fig. 1). The experiments are
focused in studying human-vehicle interaction in crosswalks
through the use of external HMIs and implicit communica-
tion based on the motion of the vehicle. We evaluate the
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effectiveness of different forms of communication between
the autonomous vehicle and real pedestrians immersed in
a virtual crosswalk scenario, which will then be used to
establish a comparison with the same study at a real twin
crosswalk and provide a measure of the behavioural gap.

II. RELATED WORK

For simulation-based testing to be a reliable substitute
for real-world testing, previous works effort is directed
at validating the sensor models used by quantifying the
discrepancy between simulation and reality, such [8] does for
radar perception and [9] for camera-based object detection
algorithms. Other approaches seek to close the reality gap
by applying feature embedding techniques or different levels
of domain randomization [10], [11]. In [12] is proposed a
method for the real-time generation of realistic images from
simulator-rendered images using generative neural networks.

As a novelty with respect to the aforementioned works,
our approach intends to close the reality gap by inserting real
behaviors into simulations through a virtual reality interface.
We can find other studies that already incorporate human
behavior in simulators using virtual reality, [13], [14], which
also focus on the particular case of pedestrians and on the
analysis of their behavior in interactions with autonomous
vehicles [15], [16]. Virtual environments offer a flexible and
controlled setting for conducting experiments with multiple
types of vehicles and external HMI systems. Consequently, in
order to justify the generation of synthetic sequences based
on behaviors of real subjects we determine the behavioral
gap by mean a study of communication between autonomous
vehicles and pedestrians, as has been proposed in other works
[17], [18], [19], [20], [21].

We advance in the approach of previous works adding the
use of motion capture systems to integrate visual body feed-
back into the simulation [6] and designing a digital twinned
environment [22] to empirically evaluate the behavioral gap
in a equivalent virtual and real scenario.

III. EXPERIMENT DESCRIPTION

The designed experiment aims to produce an interaction
situation between a simulated autonomous vehicle and a real
pedestrian within a virtual environment. Since the traffic
scenario where the interaction takes place is generated by the
CARLA [23] autonomous driving simulator, we are not only
able to conduct the experiment under controlled conditions,
but also to evaluate the result by analysing the subjects
performance through direct and indirect measurements and
questions. This section describes the scene recreated in the
autonomous driving simulator, the immersive and maneuver-
able virtual reality interface between the real subject and the
virtual world, and the different experiment settings.

A. Experiment Configuration

As the objective of this experiment is to carry out a
study of communication interfaces for autonomous vehicles
under simulated conditions but whose result can be compared
with the one obtained in real setting, we have developed a

(a) (b)

Fig. 2. External HMI activated communicating a green status (a) and a
red status (b).

digital twin of a real crosswalk from a georeferenced map
to establish the same dimensions of the road, including the
same arrangement of the rest of elements (i.e., traffic signs,
other parked vehicles, vegetation) to faithfully reproduce the
visibility conditions.

Figure 1 represents an example of the experiment which
forces an interaction between a single autonomous vehicle
and a single pedestrian. The vehicle circulates autonomously
on the road when it reaches the crosswalk just as the pedes-
trian intends to cross perpendicular to the opposite sidewalk.
The pedestrian can detect the vehicle a few meters ahead
of the crosswalk before starting the crossing action, and
lighting and weather conditions are favorable. To propitiate
this encounter, the pedestrian is told to wait with their back
to the crosswalk until the vehicle is close enough and s/he is
given the order to turn around and move towards the road.
The vehicle speed is 30 km/h and it starts a braking maneuver
using a constant deceleration until it comes to a complete
stop at the edge of the crosswalk to yield to the pedestrian.

B. Test Variations

The virtual autonomous vehicle is equipped with an ex-
ternal communication interface, so-called GRAIL (Green
Assistant Interfacing Light) [24], which is represented in
the simulator by a bar along the entire front of the car
that changes color to communicate its intentions and current
status to other agents on the road. As Figures 2a and 2b
show, the interface emits a red color to warm the vehicle
has not detected any obstacles on its path and that it does
not plan to execute any braking maneuver, while the green
color anticipates a stop to avoid a collision. It is also possible
that the interface is turned off so the pedestrian does not have
any information about the vehicle status.

Furthermore, we add an other implicit form of communi-
cation by varying the braking profile. To study the interaction
if the pedestrian is in a situation of greater risk, we define a
gentle braking maneuver, in which the vehicle decelerates at
-0.9 m/s2, and a second, more aggressive braking maneuver,
when the vehicle decelerates at -1.8 m/s2. In both cases, the
vehicle reduces its 30 km/h speed to a complete stop, but
the aggressive maneuver simulates less anticipation.

C. Test Batch

We designed five tests to assess the influence of each com-
munication technique over the pedestrian level of confidence
and their perceived level of safety during the experiment.
Table I shows the variations in the braking maneuver in



combination or not with the activation of the external com-
munication interface. Test number 0 purpose is to prime the
participants with the environment and with the risk in which
they may be involved if the vehicle does not stop. All tests
were performed in random order except test number 0, which
was always performed first for each participant.

TABLE I
EXPERIMENTATION TESTS SETTINGS

Test Braking External Stop
Number Maneuver HMI

0 - - No
1 Gentle - Yes
2 Aggressive - Yes
3 Gentle GRAIL Yes
4 Aggressive GRAIL Yes

D. Virtual Reality Setup

In order to allow the experiment to be conducted within
a virtual environment, we harness the full immersive system
for pedestrians described in [6] which adds some features
to the CARLA simulator such as real-time avatar control,
positional sound and the body tracking of the subject in-
teracting with the scene through virtual reality. In this way,
we take advantage of all the different options that CARLA
offers to simulate specific traffic scenarios while there is a
real subject playing the role of a pedestrian and being part of
the simulation. We use Oculus Quest 2, created by Meta, as
head mounted device (HMD) and Perception Neuron Studio
(PNS) motion capture system for full-body tracking [25].
Quest 2 is connected to PC via WiFi and projects onto their
lenses the CARLA spectator view. At the same time, the
captured pose and motion of the subject is integrated into
the virtual scenario, so the simulated sensors attached to
the autonomous vehicle (i.e., radar, LiDAR, cameras) can
be aware of their presence. So that the development of the
experiment was not hindered, we reserved a preset area wide
enough and free of obstacles where the participant could act
as a real pedestrian inside the simulator.

E. Participants

18 volunteers of different ages from inside and outside
the University area accepted to join the experiment. Most of
them had never had any virtual reality experience before and
they were informed about the risk of dizziness or disorien-
tation. Fortunately, all the participants felt good during the
experiment and there were no incidents.

IV. EXPERIMENT EVALUATION

This section presents the measurement tools used to eval-
uate the influence of the communication interfaces over the
confidence level of the participants. The tests include an
explicit and an implicit communication interface, the external
HMI and the braking maneuver profile respectively. For this
analysis, after each test in Table I, they were asked to fill
out a questionnaire about their subjective perception of the
interaction. In addition, direct measurement variables were

Fig. 3. Crossing event example in the gentle braking maneuver.

registered from the scenario to also evaluate changes in their
observable behavior.

A. Questionnaire

Throughout the experiment, the participants had short rest
periods between tests in which they did not leave the virtual
reality when a researcher asked them the following questions
about their last interaction with the vehicle:

– Q1: What was your level of confidence that the vehicle
would stop and yield to you?

– Q2: How did you perceive the braking of the vehicle?
– Q3: Has the visual communication interface improved

your confidence to cross?
Answers to these questions are tabulated on a 7-step Likert

scale [26] and allow to study the influence of communication
interfaces from the subjective point of view of the pedestrian.

B. Direct Measurements

In addition to having specific control over traffic condi-
tions, CARLA simulations enable access to all agents and
environment variables so we directly obtain the participant’s
location on the map and their full-body pose. The recon-
struction of their trajectory allows us to generate synthetic
sequences from multiple points of view based on their real
behavior and to extract some valuable parameters as the label
of the crossing decision event, the label of the crossing event
or their eye contact with the vehicle. The experiments are
recorded and can be replayed to compare results for different
sensors or configurations. The direct measurements used to
quantitatively analyze the interaction during the experimen-
tation are the distance to the pedestrian, the vehicle speed
and the time-to-collision (TTC) computed as TTC = d/v.
Figure 3 shows the evolution of these variables in the gentle
braking maneuver, as well as a crossing event example.

C. Crossing Event

The crossing event is defined as the moment in which the
pedestrian is exposed to a real collision risk by entering in the



Fig. 4. The crossing event is defined when the pedestrian enters the vehicle
lane and is exposed to a possible collision.

lane of the vehicle, as shown in Figure 4. It is considered a
metric to evaluate the behaviour of the pedestrian: if crosses
earlier, s/he feels more confident in the vehicle. The crossing
event is used instead of the previous crossing decision event
because it can be unequivocally identified by mean the lane
marking. If the subject perceives that the situation is more
risky and hesitates to cross, we detect this in a subsequent
crossing event. Both braking maneuvers are repeated in every
experiment, so labeling of the crossing event is needed for
directly observable measurements to be meaningful in the
study.

V. RESULTS

This section presents the results obtained both in the ques-
tionnaires and in the labeling of the direct measurements.
We search for significant differences between the tests from
Table I to determinate the utility of the communication
interfaces involved. In Figure 5 we can observe an interaction
example with the external HMI activated. The Virtual Reality
headset projects the crosswalk onto the participant and allows
displacement through the scenario. To compare the responses
to the questionnaires and the direct measurements we use the
Wilcoxon signed-rank test and the Student t-test respectively.

A. Questionnaire Results

The Wilcoxon Signed Rank test [27] is a non-parametric
statistical hypothesis test used to determinate whether the
difference between two related samples taken from the
same population is statistically significant. The alternative
hypothesis matrix showed in Table II expresses categorical
statements which compare the answers to the questions from
Q1 to Q3 obtained in each test from the experiment. A
check-mark in a specific cell means the null hypothesis
H0 : µi ≤ µj is rejected and the alternative hypothesis
H1 : µi > µj is accepted when comparing the answers
provided in test i (left column) and in test j (top row).
Rejecting H0 and accepting H1 implies there is a significant
difference in the answers and that the score in test i is higher
than in test j.

Based on the results showed on Table II, we cannot
state that the gentle braking maneuver with the external
HMI non-activated contributes to increase the pedestrian’s

TABLE II
WILCOXON SIGNED RANK TEST, Q1-Q3, α=0.05

H1 : µi > µj Test number j
1 2 3 4

Te
st
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i

Q
1

1 –
2 –
3 X X – X
4 X X –

Q
2

1 –
2 X – X X
3 –
4 X X –

Q
3

1 –
2 –
3 X X –
4 X X –

confidence in the vehicle (Q1: test1 vs test2), but we can
do state that the gentle braking maneuver with the external
HMI activated does contribute to increase the pedestrian’s
confidence in the vehicle (Q1: test3 vs test4). The external
HMI does contribute to increase the pedestrian’s confidence
in the vehicle (Q1: test3 vs test1 and test4 vs test2) and
pedestrians perceived the aggressive braking maneuver as
“more aggressive” or “less conservative” than the gentle
braking maneuvers (Q2: test2 vs test1 and test4 vs test3).

B. Direct Measurements Results

In the direct measurements analysis we use the Student’s
t-test [28] that determines if there is a significant difference
between the means of two samples groups. The alternative
hypothesis matrix is represented in Table III. A check-mark
in a specific cell means the null hypothesis H0 : µi ≤ µj

is rejected and the alternative hypothesis H1 : µi > µj is
accepted when comparing the direct measurements labeled
on test i (left column) and test j (top row). Rejecting H0

and accepting H1 implies distance, speed and/or TTC at the
crossing event in test i are significantly higher than in test
j. Figure 6 shows the box-plots of the distance between the
pedestrian and the vehicle in the labeled crossing event in
each trial.

TABLE III
STUDENT T-TEST, α=0.05

H1 : µi > µj Test number j
1 2 3 4

Te
st

nu
m

be
r
i D

is
ta

nc
e 1 – X

2 –
3 X X – X
4 X –

Sp
ee

d

1 – X
2 –
3 X X – X
4 X –

T
T

C

1 –
2 X – X X
3 –
4 –



(a) (b) (c) (d) (e)

Fig. 5. Interaction example between pedestrian and virtual vehicle equipped with external HMI: (a) The pedestrian starts with their back to the crosswalk
and is told to turn around when the vehicle approaches. (b) The pedestrian makes eye contact with the vehicle and hesitate to cross. (c) The external HMI
switches from red to green. (d) The pedestrian enters the vehicle lane establishing the crossing event. (e) The pedestrian crosses the road.

Fig. 6. Box-plots of the distances to the pedestrian at the crossing event.

Based on the results showed on Table III we can state
that the gentle braking maneuver does contribute to increase
the distance at the crossing event (distance: test1 vs test2
and test3 vs test4) and the external HMI does contribute to
increase the distance at the crossing event (distance: test3 vs
test1 and test4 vs test2). The alternative hypothesis matrix
of the vehicle speed confirms the previous statements: the
greater the distance to the pedestrian, the greater the vehicle
speed due to its constant deceleration. The aggressive braking
maneuver with the external HMI non-activated increases the
time-to-collision (TTC: test2 vs test1, test2 vs test3 and test2
vs test4). It is inferred that in test number 2 the pedestrian
confidence drops dramatically and many participants waited
for the vehicle to come to a complete stop.

C. Results Discussion

In the responses to Q1, participants express greater con-
fidence whenever the external HMI is activated. It should
be noted that the virtual environment does not distort the

appreciation of the braking maneuver, since in the responses
to Q2 the aggressive maneuver is always described as “more
aggressive” than the gentle maneuver. However, it draws
our attention that the non-activation of the external HMI in
combination with the aggressive maneuver implies that the
same braking maneuver is perceived as even more aggressive
(Q2: test2 vs test4). We can make the statement that the
activation of the external HMI has much more influence
on the risk perception of the participant, above the type of
maneuver used in the test.

If we look at the distance to the pedestrian and the vehicle
speed in Table III, we obtain the same information of the
crossing event since the braking maneuver follows a constant
deceleration. If participants cross earlier, we can infer they
feel more confident, because the vehicle is farther away
from coming to a complete stop. Despite the fact that in
the questionnaire the participants claimed that they mostly
felt safer with the external HMI activated, even with the
aggressive maneuver (Q1: test4 vs test1), in practice they also
crossed the road earlier when the vehicle followed a gentle
braking maneuver. In any case, the activation of the external
HMI continues to have a very high influence in making the
decision to cross sooner. The non-activation of the external
HMI in combination with the aggressive braking maneuver
rises sharply the time-to-collision (TTC: test2 vs test1, test2
vs test3 and test2 vs test4). We suggest that this is because
the participants perceive the situation as high risk and wait
for the vehicle to reduce its speed to almost zero.

VI. CONCLUSIONS AND FUTURE WORK

Both the questionnaire and direct measurements support
the external HMI increases the pedestrian confidence and
also leads to an earlier crossing event. On the other hand,
in the questionnaire participants do not express greater con-
fidence in gentle braking maneuver compared to aggressive
braking maneuver without the activation of the external HMI.
We suggest that the participants above all claim to feel safer
activating the external HMI due to its high visibility in the



virtual scenario, although the gentle braking maneuver also
entails an earlier crossing event.

As future work, more results are expected from comparing
the same study on the real scenario [7]. The final goal is to
verify that the behavioral gap is not critical, so it is possible
to include real behaviors in simulations through our proposal
of a fully immersive virtual reality system [6] for vulnerable
road users in the context of autonomous driving research.
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