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Abstract—In the context of autonomous driving, pedestrian
crossing prediction is a key component for improving road safety.
Presently, the focus of these predictions extends beyond achieving
trustworthy results; it is shifting towards the explainability and
interpretability of these predictions. This research introduces
a novel neuro-symbolic approach that combines deep learning
and fuzzy logic for an explainable and interpretable pedestrian
crossing prediction. We have developed an explainable predictor
(ExPedCross), which utilizes a set of explainable features and
employs a fuzzy inference system to predict whether the pedes-
trian will cross or not. Our approach was evaluated on both the
PIE and JAAD datasets. The results offer experimental insights
into achieving explainability and interpretability in the pedestrian
crossing prediction task. Furthermore, the testing results yield a
set of guidelines and recommendations regarding the process of
dataset selection, feature selection, and explainability.

Index Terms—autonomous driving, explainability, pedestrian
crossing prediction, neuro-symbolic, dataset selection, feature
selection

I. INTRODUCTION

Nowadays, predicting the behavior of road users holds
immense impact, particularly for autonomous driving and
intelligent driving systems. These technologies are primarily
focused on reducing accidents and enhancing overall road
safety. It’s crucial to emphasize that pedestrians are among
the most vulnerable road users (VRUs), and they constitute the
group most significantly impacted on European Union roads.
In fact, according to the European Road Safety Observatory
and its Annual Accident Report from 2022, a impressive 20%
of fatal accidents involve pedestrians. This alarming statistic
has remained constant over the past several years, signifying
that one out of every five fatalities on European Union roads
involves pedestrians [36].

This data underscores the critical need for advancements in
pedestrian crossing action prediction and road safety measures
to protect this vulnerable group and reduce accidents on the
road. In light of this, many research communities have been
developed Machine Learning (ML) models and methods to
make more robust prediction systems and to face the related
challenges.

For a long time most of these models and methods were
viewed as ’black boxes’ because they lacked the ability to
explain the reasoning behind their predictions. Consequently,
understanding why a machine learning model made a specific
prediction was challenging. Besides, it is widely recognized
that, especially for certain tasks is not enough to obtain the

prediction, and equally crucial is the capability to interpret that
prediction.

In the context of autonomous driving, this challenge has
gained prominence due to the imperative need to clarify every
decision made by autonomous vehicles (AVs). In [39], the
author highlights the necessity for explanations from multiple
perspectives:

• Psychological Perspective: Understanding why a specific
decision was made can have deep implications for en-
hancing road safety and reducing traffic accidents.

• Sociotechnical Perspective: This viewpoint recognizes
that the design and development of autonomous driving
systems must be human centred.

• Philosophical Perspective: Explaining ego-vehicle deci-
sions contributes to providing descriptive information
regarding the causal history of actions taken

In this work, we propose an experimental neuro-symbolic
approach to develop an explainable and interpretable pedes-
trian crossing predictor. We base this predictor on fuzzy logic
and deep learning for feature extraction. The proposed method
employs multiple explainable features extracted from the
JAAD and PIE datasets for mining fuzzy rules. Subsequently,
these rules are used to define a fuzzy inference system that
facilitates pedestrian crossing prediction. This approach is
particularly novel as it not only focuses on accurate prediction
but also establishes a baseline for explainability.

On the other hand, it’s crucial to acknowledge that the
success of machine learning projects is significantly influenced
by the quality and relevance of the datasets used for model
training and testing. In fact, a well-chosen dataset has the
potential to enhance the accuracy and efficiency of the model,
whereas an inaccurate selection can yield unfavorable results.
Furthermore, the characteristics of the datasets play a crucial
role in shaping the behavior of a model. It is essential to
consider that a model’s performance in real-world scenarios
may be compromised if its deployment context significantly
differs from the training and evaluation datasets [18]. Further-
more, it is important to highlight that within the context of
explainability and interpretability, the selection of the dataset
holds significant relevance. This is because a well-chosen
dataset can play a key role in facilitating the extraction of
explainable features from pedestrian crossing action datasets.

The rest of the paper proceeds as follows: Section 2
discusses the related work. Details about the proposed archi-
tecture for an explainable pedestrian action predictor, feature
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selection and fuzzy logic definitions are introduced in Section
3. Section 4 describes the implementation and experimental
setup. The experimental results and analysis are presented in
Section 5. Section 6 provides a baseline for explainability
of action pedestrian predictors. The guidelines and recom-
mendations regarding feature selection, dataset selection and
explainable prediction are introduced in Section 7. Finally, in
Section 8 are presented the conclusions and future work.

II. RELATED WORK

A. Approaches for dataset selection

Datasets are playing an important role into the ML Projects,
with researchers actively exploring significant aspects and
considerations related to them. For instance, there are stud-
ies that aim to comprehensively document the creation and
utilization of datasets through the development of datasheets.
These datasheets provide valuable information regarding the
motivation behind dataset creation, composition details, collec-
tion processes, preprocessing techniques, distribution methods,
besides data usage and maintenance guidelines [18]. Similarly,
research efforts are being dedicated to various aspects of
datasets, such as tracking and controlling dataset versions [12]
and exploring data provenance [7].

In addition, there are some data selection methods which
focus on choosing the most informative training examples
for machine learning tasks across a specific dataset [22].
Nevertheless, it is worth noting that the topic of dataset
selection approaches is relatively under-discussed within ML
research community.

B. Pedestrian Action Datasets

In the context of autonomous driving, numerous datasets en-
compass pedestrian annotations. While datasets like Trajectory
Inference using Targeted Action priors Network (TITAN) [25]
concentrate on a range of pedestrian actions, including motion,
communicative, and contextual actions, they do not explic-
itly incorporate the task of crossing action in their dataset
approach. Conversely, datasets such as Stanford-TRI Intent
Prediction (STIP)[24], the Joint Attention for Autonomous
Driving (JAAD) [16], and Pedestrian Intention Estimation
(PIE) [20] explicitly include crossing actions within their
dataset approach.

Taking this into consideration, for our initial exploration into
an explainable and interpretable pedestrian action predictor, we
have chosen to focus on widely used and publicly available
datasets within the research community, namely JAAD and
PIE.

1) JAAD Dataset: JAAD is a richly annotated datataset
composed by 348 short video clips. It includes a diverse
number of road actors for each scene and several driving loca-
tions, traffic and weather conditions. The dataset’s annotations
are divided by spatial, behavioural, contextual and pedestrians
information.
Regarding the pedestrian action annotated in JAAD, it is
noteworthy that approximately 72% of pedestrians actively
cross the street, whereas the remaining 28% do not engage
in street crossing.

2) PIE Dataset: The creators of JAAD released a new
dataset called PIE, it contains over 300K labeled video frames
recorded in Toronto in clear weather. In addition to the
similar type of annotations found in JAAD, PIE stands out by
incorporating ego-vehicle information derived from on-board
diagnostics (OBD) sensors. Distinguished from the JAAD
dataset which primarily focuses on pedestrians intending to
cross, the PIE dataset provides annotations for all pedestrians
in close proximity to the road, irrespective of whether they
attempt to cross in front of the ego-vehicle or not. Furthermore,
in contrast to the annotated pedestrian action in the JAAD
dataset, the PIE dataset exhibits as well an imbalance where
a larger proportion of pedestrians are observed not crossing
the street. Specifically, approximately 39.2% of pedestrians
actively cross the street, whereas the remaining 60.8% do not
engage in street crossing.

C. Explainability and interpretability concepts

In general, there is not a consolidated agreement within the
ML community on the definition of interpretability and ex-
plainability and many authors use these terms interchangeably
[40]. However, some authors as Lipton in [15], emphasize
the distinction between these concepts by framing them as
questions: interpretability raises the question ”How does the
model work?” while explainability attempts to answer ”What
additional insights can the model provide?” [40]. Additionally,
the term interpretability is often associated with the degree to
which a human can comprehend the rationale behind a deci-
sion, while explanation refers to the response to a why question
[35]. In this paper we will use both terms as complementary
for each other.

D. Pedestrian Crossing Action Prediction and its explainabil-
ity

Pedestrian crossing action prediction is a ML task focused
on forecasting if a pedestrian will cross the road at some
point in the future. This task has been addressed through a
diverse range of algorithms and architectures. Among these
approaches, it is particularly noteworthy to highlight the Sin-
gleRNN method that focuses on leveraging contextual features
and employing an encoder-decoder architecture powered by
recurrent neural networks (RNNs) [23]. In [19], the authors
used a graph-based model and 2D human pose estimation to
predict whether a pedestrian is going to cross the street. The
method of CapFormer [29] uses a self-attention alternative
based on transformer architecture. This method primarily
focuses on bounding boxes, pose estimation, and AVs speed.
Additionally, a 3D convolutional model (C3D) is employed,
along with cropped regions of pedestrian bounding boxes
from RGB video sequences, to facilitate spatiotemporal feature
learning [14]. Another group of algorithms relies on stacked
with multilevel fusion RNN (SFRNN) [26] and convolutional
LSTM (ConvLSTM) [13].

Furthermore, it is worth mentioning the recently developed
benchmark by York University, which extensively assessed
the performance of various ML approaches in the pedestrian
crossing task. This benchmark not only standardized the
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evaluation criteria for the task but also introduced a model
that combines the power of RNNs and 3D convolutions [28].

On the other hand, despite the abundance of models and
research focused on pedestrian crossing predictions, only a
limited number of them provides insights into explainability or
are specifically developed within the context of explainability.
For instance, the research [38] highlights that Transformers
offer an advantage in terms of interpretability, due to their
attention mechanism. Moreover, the utilization of pedestrian
location and body keypoints as features in predicting pedes-
trian actions results in more human-like behavior. In [30], the
authors propose a dynamic Bayesian network model that takes
into account the influence of interaction and social signals.
This system leverages visual means and employs various
inference methods to provide explanations for its predictions,
with a specific focus on determining the relative importance
of each feature in influencing the probability of pedestrian
actions.

E. Fuzzy Logic

Fuzzy logic was introduced by Zadeh [1] in order to
deal with ”degrees of truth” rather than absolute values of
”0 and 1”. It can be defined as a multi-valued logic that
closely resembles human thinking and interpretation. The main
components of fuzzy logic are [10][1]:

• Fuzzy sets. Composed by linguistic variables where val-
ues are words and not numerical.

• Membership functions. Define the shape and characteris-
tics of fuzzy sets.

• Fuzzy rules. Connects various input and output fuzzy
variables through conditional statements expressed as
”if...then” rules.

• Fuzzy reasoning. Draws the conclusions from fuzzy sets
and fuzzy rules

Fuzzy inference system (FIS) is a framework based on fuzzy
logic components that follows a step-by-step procedure to pro-
vide outputs that can be explained. The mentioned procedure
implies different steps such as fuzzifier, rule base, inference
engine and defuzzier [10]. These steps collectively form the
FIS framework, which enables the processing of fuzzy inputs
to produce understandable and interpretable outputs. It is
important to highlight that fuzzy logic is a solution to com-
plex problems which requires human reasoning and decision
making. It has been widely used in the field of Intelligent
Transportation Systems (ITS), specially in automated vehicle
control [6] [21]. In addition, its application extends to various
areas as mentioned in [5], including driver behavior model-
ing, analyzing alternate routes, predicting traffic patterns, and
addressing traffic control issues.

III. EXPLAINABLE PREDICTOR PROPOSAL

The following section introduces the general approach pro-
posed to achieve an explainable pedestrian crossing predictor
based on fuzzy logic. In addition the selected features are
briefly explained.

A. Proposed Approach

In this work, we proposed an experimental approach to
develop an explainable and interpretable pedestrian crossing
predictor (ExPedCross) based on a neuro-symbolic model
using fuzzy logic. The proposed approach is divided into three
main steps: (1) fuzzy rule mining, (2) fuzzy inference system
definition and (3) explainable predictor (see Figure 1).

Fig. 1. Experimental approach steps

The rule mining process (Step 1) involved the potential of
feature extraction from on side, and the utilization of diverse
algorithms to generate fuzzy rules on the other side. As can
be described in the Figure 2, the rule mining process begins
with pedestrian action dataset (JAAD and PIE) consisting
of videos, images and annotations, then a feature extractor
component is employed to extract features using deep learning
and neural networks, creating a meta-dataset that contains the
extracted features for each pedestrian (The description of these
features is detailed in section III). Then the meta-dataset is
used to extract fuzzy rules and membership functions through
fuzzy rule learning algorithms. It is important to highlight that
the data used for extracting fuzzy rules maintains a balance
between the number of pedestrians who cross the street and
those who do not. This balanced representation ensures that the
extracted fuzzy rules are equally informed by both scenarios.

Fig. 2. Step 1: Fuzzy rule mining

For the rule mining process several fuzzy rule learning
algorithms were evaluated , including notable ones such as
Chi-RW-C [4], GP-COACH-C [8] and IVTURS-FARC [11].
Among them, IVTURS-FARC was selected based on its
performance and promising preliminary results in generating
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fuzzy rules from the meta-dataset. IVTURS-FARC is a lin-
guistic fuzzy rule-based classification algorithm which uses
interval-valued restricted equivalence functions to increase the
relevance of the rules during the inference process. The fuzzy
rule learning process of IVTURS-FARC utilizes the FARC-
HD algorithm [9]. The resulting fuzzy rules take the following
form, as described in the study [11]:

Rule Rj :If x1 is Aj1 and...and xn is Ajn

then Class = Cj with RWj

(1)

where Rj is the label of the jth rule, x = (x1, ..., xn) is an
n-dimensional pattern vector (pedestrian features in our work),
Aji is an antecedent fuzzy set representing a linguistic term,
Cj is the class label and RWj is the rule weight [3].
The second step of the proposed approach uses the output
of rule mining process to define the fuzzy inference system.
This system has been defined as Takagi-Sugeno (TS) fuzzy
inference [2] which allows to represent non-linear systems
with a set of fuzzy rules of which consequent parts are
linear state equations. In our proposal the TS fuzzy inference
system included as an input the fuzzifies pedestrian features
with its membership function, the generated rules and zero-
order output values. To have a clear picture of the fuzzy
inference procedure, we defined the crossing prediction output
Cj according to :

Cj =

{
Cross : 1
NotCross : 0

(2)

In the last step (Step 3) , we have the explainable pedestrian
crossing predictor (ExPedCross) that uses fuzzy logic and
a neuro-reasoning approach to predict whether a pedestrian
will cross the street. By incorporating pedestrian features as
input and employing the TS fuzzy inference system, this novel
approach offers a high level of explainability through the
activation of fuzzy rules during each prediction. For the initial
experiments, the ExPedCross uses 1 frame as observation time
to predict the next 30th frame.

B. Features Selection

In this study, we carefully choose eigth features to serve
as inputs for ExPedCross. Among these features, seven are
derived through the implementation of neural networks, while
one feature is obtained directly from the pedestrian crossing
datasets. The following list outlines the selected features:

• Motion Ability (MAP ) describes the motion capability
of the pedestrians: Fully capable, using wheelchair, using
crutches, using walking frame and pushing a wheelchair.

• Age (AGP ) describes the pedestrian age considering two
classes: Adult and child.

• Body Orientation (BOP ) describes the pedestrian pos-
ture through an angle from 0 to 360º.

• Gaze (GAP ) describes the attention of the pedestrian,
indicating whether the pedestrian is looking at the ego-
vehicle.

• Action (ACP ) describes the motion state of the pedes-
trian, classifying between the following actions: stand,

walk, wave, run or undefined (used when pedestrian
action is not clear).

• Proximity to the road (PRP ) describes if the pedestrian
is near to the road. This feature is classified in three
levels according the pedestrian closeness to the road: near,
medium distance or far.

• Zebra Crossing (ZCP ) represents the presence of a
zebra crossing in the scene.

• Distance (DEP ) represents the estimated distance to the
ego-vehicle.

Regarding the experiments conducted in this work, it is
important to highlight that in these initial experiments, the
features used specifically focus on capturing the pedestrian
state on a frame-by-frame basis. This means that the features
are extracted and analyzed for each individual frame, providing
a detailed understanding of the pedestrian’s state at each
moment in time. Furthermore, in this paper, the features
’motion ability’ and ’age’ will not be considered. According
to the experimental results, these features did not significantly
contribute to the performance of ExPedCross. This can be
attributed to the lack of sufficient samples representing a
diverse range of pedestrian motion capabilities and ages in
the JAAD and PIE datasets.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

In this section, we detail the implementation and the test
methodology to prove the ExPedCross.

A. Data Sampling

In this work, we split the datasets mentioned previously for
two main tasks: (1) training during the fuzzy rule mining step
(See Figure 2) and (2) testing the performance of ExPedCross.

Besides to ensure the reliability of our experiments, we
initially selected videos that met specific criteria such as
visibility and high quality. As a result, we carefully choose
284 videos from JAAD and 53 videos from PIE to be included
in this experiment.

In addition during the training phase, the videos were care-
fully sorted based on their quality and relevance, prioritizing
the most representative ones at the beginning of the training
set. This sorting strategy aimed to enhance the learning process
by focusing on the most informative videos.

For the testing phase, we defined four distinct groups: (1)
JAADall, (2) JAADbeh, (3) PIEall and (4) PIEbeh. The
all versions include all the selected videos from the JAAD
and PIE dataset, while the beh group excludes videos with
pedestrians annotated as irrelevant during the meta-dataset
generation.

By splitting the datasets and defining these groups, we
ensured a comprehensive evaluation of our model’s perfor-
mance across different scenarios, including both relevant and
irrelevant pedestrian annotations. Afterwards, the data sam-
pling mentioned above was used to generate the meta-dataset
from JAAD and PIE datasets. In addition, it is important to
highlight that due to the imbalance between pedestrians who
cross the street and those who do not, special attention was
given to creating a balanced meta-dataset. Besides, two rules
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were defined who support carefully the selection of data, trying
to reduce data noise: (1) Don’t consider more than 60 frames
after pedestrian cross, (2) Don’t consider more than 90 frames
when the pedestrian will not cross.

B. Features Extractor

The features extractor was developed with a modular
architecture which allows to include different modules to
extract each feature. It was developed using python and
PyTorch; besides it is composed by 8 modules which are
responsible to extract each feature as is described:

1) Pedestrian Motion Ability and Age: To extract the pedes-
trian ability feature we used the object detection approach,
focusing on a You Only Look Once (YOLO), specifically
we use YOLOv7 [37]. To train this convolutional neural
network (CNN) we decide to create a custom dataset from
sourced images from Google Images, Pexels and freePick.
This dataset is composed by 1498 images distributed in 7
classes such as adult, child, wheelchair, crutches, walking
frame and wheelchair pusher. Hence, this module receives an
image as input and provides three key outputs: the motion
ability, pedestrian age, and the corresponding bounding box.

2) Pedestrian Orientation: To calculate the pedestrian body
orientation it was used the PedRecNet [31] network designed
and implemented by the Reutlingen University. This neural
network is a multitask network that supports various pedestrian
detection functions from 2D and 3D human pose. Based on
the joint positions it is estimated the human body orientation,
generating as a result the polar angle θ and the azimuthal angle
φ. Human body orientations are output as angles between 0º
- 180º for θ and 0º - 360º for φ.

The φ angle allows to describe if the pedestrian is oriented
to the left, the Right, is in the car direction or opposite
to car direction. Nevertheless, the angles which can indicate
Right direction are in a discontinuous range 0º a 45º y 315º
a 0º. Taking into account that a fuzzy set is characterized
by a membership function fA(x) represented by continuum
truth values in an interval and considering that the mentioned
discontinuous range can not be represent as a fuzzy set, we
decide to shifted +45º the final orientation.

3) Pedestrian Gaze: To calculate if the pedestrian is look-
ing at the vehicle, it is used the 2D body pose detected through
the PedRecNet [31]. Pedestrian gaze is determined by focusing
on position of the nose, left eye, and right eye keypoints [32].

4) Pedestrian Action: To detect the pedestrian action it was
implemented a transformer inspired by the Action Transformer
[34]. The transformer architecture implemented focuses only
in the encoder part. The input of the neural network is an
feature array with shape B x F x K , where B represent
the batch size, F represents the frames and K contains the
pedestrian’s body pose reflected as keypoints. The output is a
number which represents the pedestrian action.

To train the transformer it was used the MPOSE2021 dataset
[34] which relates the human skeleton with human action. This
dataset is composed of 20 distinct actions. However, in order
to focus on the actions most relevant for pedestrian crossing

predictions, we made the decision to reduce the number of
classes. Upon comparing the test results, we observed that
using 20 classes during training resulted in a 90% accuracy
rate on the testing set. Surprisingly, when we reduced the
classes to just 5, the accuracy improved significantly to 94%.
Therefore, we proceeded to condense the dataset into these
5 classes, which are grouped as illustrated in the following
table:

TABLE I
PEDESTRIAN ACTIONS GROUP

Class Values

0: Standing Standing, Check-watch, Cross-arms,
Scratch-head, Hands-clap

1: Walk Walk, Turn
2: Wave Wave, Point, Wave2
3: Run Run, Jog

4: Undefined Sit-down, Get-up, Box, Kick, Pick-up,
Bend, Jump, Position Jump

5) Pedestrian Proximity to the road: To detect the pedes-
trian proximity to the road it was used a YOLOPv2 pretrained
network [33]. YOLOPV2 is a multi-task learning network that
performs the task of traffic object detection, drivable road
area segmentation and lane detection. Based on the drivable
road area segmentation and lane detection and an experimental
minimum distance it is estimated if the pedestrian is near to
the road or not.

6) Pedestrian Distance: The pedestrian distance was esti-
mated using the triangle similarity, which is represented in the
equation 3, where W is a known width of the pedestrians, F
is the focal length and P is the pedestrian width in pixels:

D = (WxF )/P (3)

It is important to highlight that for each dataset it was re-
quired to compute a different estimation, due to the difference
between the camera parameters used for each record.

C. Explainable Pedestrian Crossing Predictor

The development of the ExPedCross predictor involved two
main phases. In the first phase, we utilized the KEEL software
[17], an open-source Java framework, to generate the fuzzy
rules from a pedestrian meta-dataset.

In the subsequent phase, we developed a software appli-
cation that takes as input a vector with a shape of 1 x 8,
encompassing the pedestrian features extracted from 1 after
the first 30 frames of observation (See Figure 3). Based on this
vector the crossing behaviour of the next 30th was predicted
using fuzzy logic. This software was developed in python and
using the simpful [27] library.

D. Test Methodology

To understand the significance of dataset and data selection,
we conducted a series of experimental tests on our explainable
predictor. In the context of ML, factors such as dataset
quantity, data preprocessing, randomness, ablation factor, and
the incorporation of diverse datasets play important roles.
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Fig. 3. ExPedCross timing

Therefore, each factor was defined as an experiment. The paper
evaluate the result of 5 experiments.

The experiments are carried out by using different config-
urations, each addressing specific aspects of dataset and data
selection. The order of experiment’s execution was determined
with the intention of obtaining valuable insights and feedback
for subsequent experiments. Regarding the evaluation of the
experiments we use the f1 score (F1) metric. In summary, F1
Score is the harmonic mean between precision and recall.

In light of this, the test methodology follows the next
sequence of instructions:

• Sort the video list for JAAD and PIE taking into account
the quality and usability of each video.

• For each experiment:
– Define the configurations to test in JAAD and PIE
– For each configuration:

∗ Use the fuzzy rule mining process (See Figure
2) to generate the fuzzy rules and membership
functions. The input data of this process should
vary taking into account the test configuration.

∗ Use the fuzzy rules generated and the ExPedCross
to predict and mesure the results over the four
groups of testing: (1) JAADall, (2) JAADbeh,
(3) PIEall and (4) PIEbeh.

– Analyze the test results and provide the feedback

V. EXPERIMENTS OVER AN EXPLAINABLE PREDICTOR

The following section presents the experimental results
focused on pedestrian crossing prediction task.

A. Quantity Factor

In the context of ML, one of the critical decisions when
training a model is determining the amount of data to use.
This decision can vary depending on the specific ML task at
hand. The initial experiments were conducted to address the
following question: Does having more data result in better
performance of the predictions?

To address this question, we designed a set of configurations
that incrementally increased the number of data records for
PIE and JAAD. We initially started with 2000 records, bal-
anced equally between pedestrians who cross and don’t cross.
Subsequently, we expanded the dataset to include 8000 rows,
10,000 rows and then 14,000 rows, gradually increasing the
volume of data. Since the PIE dataset is larger in size, we

extended the analysis to incorporate two additional configura-
tions. These configurations included 20,000 rows and 80,000
rows, specifically for the PIE dataset.

The following table presents the result of the different
configurations mentioned above:

TABLE II
RESULTS QUANTITY FACTOR. ABBR. CONF:CONFIGURATION, R:RULES,

F1: F1 SCORE, J:JAAD DATASET , P:PIE DATASET

JAADall JAADbeh PIEall PIEbeh

Conf R F1 F1 F1 F1
J2K 55 0.70 0.71 0.44 0.48
J4K 68 0.72 0.72 0.53 0.56
J8K 62 0.74 0.75 0.50 0.53
J10K 73 0.74 0.75 0.46 0.50
J14K 58 0.75 0.76 0.46 0.51
P2K 38 0.46 0.47 0.48 0.51
P4K 49 0.57 0.57 0.49 0.52
P8K 54 0.58 0.59 0.45 0.52
P10K 45 0.56 0.55 0.46 0.52
P14K 49 0.64 0.66 0.46 0.53
P20K 50 0.57 0.58 0.47 0.51
P80K 36 0.59 0.60 0.54 0.57

By systematically expanding the dataset in this manner,
we can identify that more amount of data can improve the
performance of the predictor when it is testing over the same
dataset. However, it does not imply better results over other
datasets. This means that for an explainable predictor based on
fuzzy logic, increasing the amount of data does not guarantee
better generalization on its own. Furthermore, as can be
observed in the Table II, more rules do not necessarily provide
better results, because one of the best configuration provides
the minimum number of rules over all the configurations
defined: 36 rules defined in the P80K configuration.

In addition it is important to mention that the configuration
J14K based on JAAD contains in average the best result of the
experiments. This configuration contains 66,000 records less
than the second best configuration P80K based on PIE. That
can be explained because JAAD dataset contains more diverse
scenarios and pedestrians which can allow to understand better
the behaviour and characteristics of the pedestrian related with
the cross/not cross action.

B. Randomness factor

The objective of this experiment was to understand if in-
cluding a human reasoning over the selection videos to get the
fuzzy rules, can improve the performance of the explainable
predictor or if the randomness selection is enough to get
accurate results. This experiment takes as baseline the result
from the configuration J8K and P14K from the Quantity factor
experiment. As was described in the test methodology, prior
to selecting the data input for the fuzzy rule mining process,
the videos were listed and ordered for each dataset according
its quality and usability on the pedestrian crossing prediction
context. Then, this experiment includes 6 more configurations
which are compose of the same number of records for each
case (8,000 and 14,000 records) but where the selection of
videos is random.

According to the results present in the Table III, the
random selection of the data could improve the performance
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of explainable predictor over its own dataset. Configurations
J8KR3 and P14KR1 have better results over JAAD and PIE
respectively. However, the process of analyzing the videos
and sorting them according to a classification that evaluates
relevance, quality, and context of the video, can improve the
performance and generalization of the explainable predictor. In
fact, configurations J8K and P14K present better results over
cross-testing.

TABLE III
RESULTS RANDOMNESS FACTOR. ABBR. CONF:CONFIGURATION,

R:RULES, F1: F1 SCORE, J:JAAD DATASET, P:PIE DATASET

JAADall JAADbeh PIEall PIEbeh

Conf R F1 F1 F1 F1
J8K 62 0.74 0.75 0.50 0.53
J8KR1 66 0.68 0.70 0.34 0.40
J8KR2 80 0.75 0.75 0.46 0.50
J8KR3 70 0.76 0,77 0.48 0.53
P14K 49 0.64 0.66 0.46 0.53
P14KR1 59 0.62 0.62 0.51 0.55
P14KR2 28 0.39 0.39 0.50 0.52
P14KR3 57 0.57 0.57 0.48 0.51

C. Selection Factor

This experiment was focused on understanding the impact
and importance of selecting adequate data to obtain accurate
results from an explainable predictor. The main objective
was to confirm the hypothesis that careful data selection is
crucial for obtaining meaningful fuzzy rules. Therefore, the
experiment explored different and incremental configurations
generated without any frame restrictions (See Section IV-
A). In fact, the configuration for this experiment includes
the following configurations: For JAAD: (1) The J14K from
Quantity experiments, (2) J14Kn with 14,000 records without
data filtered and (3) J30Kn with 30,000 records without data
filtered. From PIE: (1) P80K from Quantity experiments, (2)
P80Kn with 80,000 records without data filtered and (3) J160K
with 160,000 records without data filtered.

TABLE IV
RESULTS SELECTION FACTOR. ABBR. CONF:CONFIGURATION, R:RULES,

F1: F1 SCORE

JAADall JAADbeh PIEall PIEbeh

Conf R F1 F1 F1 F1
J14K 58 0.75 0.76 0.46 0.51
J14Kn 28 0.72 0.73 0.42 0.46
J30Kn 29 0.71 0.71 0.44 0.48
P80K 36 0.59 0.60 0.54 0.57
P80Kn 79 0.60 0.61 0.50 0.54
J160Kn 69 0.42 0.42 0.50 0.51

According to the results presented in the Table IV, the
selection and filtering of data had a significant impact on
fuzzy rule generation. The rules created from data with certain
frame restrictions demonstrated better performance for the
explainable predictor.

D. Ablation Factor

This experiment was focused on understanding the relation-
ship between the different features and the prediction results.

It builds upon the best results obtained from the quantity factor
experiments, specifically the configurations J14K and P80K.
In this experiment, the data input for the fuzzy rule mining
process was modified. The changes involved eliminating each
feature from configuration J14K and P80K, to assess its impact
on the prediction results. The following table presents the
result of the different configurations mentioned above:

TABLE V
RESULTS FEATURES FACTOR. ABBR. CONF:CONFIGURATION, R:RULES,

F1: F1 SCORE, J:JAAD DATASET, P:PIE DATASET

JAADall JAADbeh PIEall PIEbeh

Conf R F1 F1 F1 F1
J14K 58 0.75 0.76 0.46 0.51
J14K-NDistance 56 0.74 0.75 0.41 0.45
J14K-NProximity 45 0.49 0.50 0.30 0.34
J14K-NAction 50 0.75 0.75 0.43 0.49
J14K-NAttention 54 0.75 0.77 0.45 0.51
J14K-NOrientation 46 0.74 0.76 0.48 0.54
J14K-NZebraCross 51 0.74 0.75 0.47 0.52
P80K 36 0.59 0.60 0.54 0.57
P80K-NDistance 36 0.58 0.58 0.43 0.44
P80K-NProximity 31 0.53 0.54 0.54 0.57
P80K-NAction 17 0.47 0.48 0.51 0.55
P80K-NAttention 25 0.58 0.59 0.54 0.59
P80K-NOrientation 15 0.53 0.54 0.55 0.58
P80K-NZebraCross 22 0.60 0.61 0.53 0.58

The most representative feature extracted from JAAD is
proximity, while from PIE are distance and action. This
conclusion is drawn from observing the reduction in prediction
performance when these features are eliminated from the
input (J14K-NProximity and JP80K-NDistance configurations)
during the fuzzy rule learning process. The significant decrease
in prediction accuracy without these features suggests their
importance in the overall prediction process.

Furthermore, during cross-testing, it is important to note
that the orientation feature from JAAD and the label of
zebra crossing from PIE can have a negative impact on the
results. This implies that the representation of these features
varies considerably between the two datasets. The divergent
representation of these features across datasets may lead to in-
consistencies in prediction performance when the explainable
predictor is applied to different environments or scenarios.

To complement this experiment, we conducted an analysis
of the correlation between all the selected features and the
pedestrian crossing action. Specifically, we focused on the data
from the configurations J14K and P80K for this correlation
analysis.

In Figure 4, it is evident that pedestrian crossing action
shows a small positive correlation with the pedestrian action in
the JAAD dataset. This suggests that as the pedestrian’s action
class increases (as seen in table I)), there is a higher likelihood
of the pedestrian crossing. Additionally, a medium negative
correlation is observed between the pedestrian’s proximity to
the road and the likelihood of crossing in both the JAAD
and PIE datasets. This implies that when the pedestrian is
in close proximity to the road, there is a greater likelihood of
them crossing. Lastly, in the PIE dataset, a medium negative
correlation is observed between the crossing action and the
pedestrian’s distance. This suggests that when the pedestrian’s
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distance to the ego-vehicle is low, there is a greater likelihood
of them crossing.

Fig. 4. Features Correlation

Conversely, the remaining pedestrian features do not exhibit
a significant correlation with the pedestrian’s decision to
cross. These findings suggest that, in general, the evaluated
features alone do not provide sufficient representatives for
predicting pedestrian crossing behaviour. Instead, they need
to be complemented with additional features that convey more
representative information.

E. Mix factor

The main goal of this experiment was to identify if the ex-
plainable predictor performance improves by mixing datasets
for training. To develop the experiment three configurations
were generated which combined JAAD and PIE as a data
input from the fuzzy rule mining process. The configurations
were defined as follow: (1) J8K-P8K: 8,000 records from each
dataset, (2) J10K-P10K: 10,000 records from each dataset and
(3) J14K-P80K 14,000 records from JAAD and 80,000 records
from PIE.

According to the result presented in the Table VI when the
datasets are combined to create the data input, there is only a
slight improvement in performance during cross-testing. This
behaviour can be attributed to the fact that the datasets share
similar scenarios.

TABLE VI
RESULTS MIX FACTOR. ABBR. CONF:CONFIGURATION, R:RULES, F1: F1

SCORE

JAADall JAADbeh PIEall PIEbeh

Conf R F1 F1 F1 F1
J14K 58 0.75 0.76 0.46 0.51
P80K 36 0.59 0.60 0.54 0.57
J8K-P8K 61 0.73 0.74 0.52 0.57
J10K-P10K 64 0.73 0.73 0.54 0.58
J14K-P80K 62 0.51 0.51 0.50 0.52

VI. BASELINE FOR EXPLAINABILITY

A. Results

In the Table VII we gathered the results obtained with our
best fuzzy rules generated. In the case of the explainable
crossing predictor, the best results over each dataset include the
fuzzy rules trained with: 14,000 records from JAAD ordered
videos (J14K), 14,000 records from JAAD random videos
(J14KR3) and 10,000 records from PIE + 10,000 records from
JAAD (J10K-P10K).

TABLE VII
FINAL RESULTS. ABBR. CONF:CONFIGURATION, R:RULES, F1: F1 SCORE

JAADall JAADbeh PIEall PIEbeh

Conf Factor F1 F1 F1 F1
J10K-P10K Mix 0.73 0.73 0.54 0.58
J8KR3 Random 0.76 0.77 0.48 0.53
J14K Quantity 0.75 0.76 0.46 0.51

It is important to highlight that the results from these con-
figurations are not associated with the condition that the Ex-
PedCross fails in the majority of just one pedestrian behaviour
(Crossing or Not Crossing). For instance, the confusion matrix
for the configuration J10K-P10K (See Figure 5) evaluated
on JAADall PIEall evidences that the mispredictions are
balanced between the two classes. That means that the F1
score is not affected because the predictor succeeds only with
one of the classification types.

Fig. 5. Confusion matrix for J10K-P10K configuration

B. Predictions explainability

Taking as a baseline the best configuration J10K-P10K from
JAAD and PIE dataset, we conducted an analysis focused on
the rules that ExPedCross activates when predicting pedestrian
crossing behaviour within the JAADall and PIEall. Out of
the 64 rules that constitute the J10-P10 configuration, all of
them were activated during the predictions. However, it was
evident that certain rules were triggered more frequently than
others.

In the following figures, we present the top ten most
frequently activated rules for predicting pedestrian crossings
within the two datasets:

In figure 6, it is evident that three primary rules (Rule 62,
Rule 47, and Rule 59) were activated the most frequently,
while the remaining seven rules exhibited a similar percentage
of activation. Regarding the most triggered rule, rule No. 62
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Fig. 6. Fuzzy rules activation in JAAD dataset

was triggered 41.11% of the time, and its definition is provided
above:

IF (CrossLevel IS easy) AND( Distance IS

too near) AND ( Action IS run) THEN

(Cross IS crossing) WEIGHT 0.66

In terms of explainability, the mentioned rule makes sense,
considering the three features that can identify a pedestrian
who is running and observes that the ego-vehicle is nearby
(likely stopped) and in the traffic scene there is a zebra cross-
ing. These conditions collectively suggest a higher probability
of crossing. Concerning the other rules within the top 10, it’s
worth noting that all features are incorporated into these rules.
However, the orientation and distance features appear to be
more prominently utilized in the rules that were activated.

In contrast, within the PIEall, there exists a notable dis-
parity between the most activated rule and the other nine.

Fig. 7. Fuzzy rules activation in PIE dataset

In fact, rule No.2 was the most activated with 57.15% times:

IF (Proximity IS moderate) THEN

(Cross IS not crossing) with WEIGHT 0.56

It can be inferred that a moderate proximity of the pedestrian
to the road is considered a relevant factor when predicting
that a pedestrian will not cross in the PIE dataset. In terms
of explainability, individuals who are not close to the road
are typically not perceived as pedestrians likely to cross
imminently.

Additionally, it is important to highlight that all the extracted
features are included in the top 10 rules. Nevertheless, the ori-
entation and distance features appear to be the most frequently
used in these rules.

In summary, while the top rules activated for predictions in
each dataset differ, seven rules coincide with varying percent-
ages of activation. However, the most influential features for
both datasets were consistently the proximity, orientation and
distance.

VII. GUIDELINES AND RECOMMENDATIONS

The following section presents some guidelines and rec-
ommendations generated as a result of the experimental in-
sights of the explainable pedestrian crossing predictor. These
guidelines include the process of dataset selection and feature
selection.

A. Dataset Selection

During the experiments we identify how important it is
to take care and go deeply in the dataset selection process.
Therefore we define the following guidelines to choose the
adequate dataset for a ML project, especially in the context of
autonomous driving and explainability:

• What you expect from dataset?: Identify the task you
want to achieve and what you expect in detail from the
dataset. We recommend to define a checklist of criteria
in order to save time when you are selecting the dataset.

• Detail deeply the dataset: Take a considerable time
to identify, analyse and understand the dataset, its data,
properties, videos, images and what it is composed of.
Detail how the dataset is labelled and read in detail the
documentation.

• Evaluate quality Vs quantity: In terms of explainability,
a big amount of data for pedestrian crossing task does
not guarantee a fuzzy rule generalization on its own.
Therefore, it is important to evaluate the quality of the
dataset, the diversity of scenes and actors. It can be at
the end more relevant than the quantity of data.

• Each dataset is different: Take seriously that each
dataset is different. Using different datasets with the
same preprocessing process and without detailing the
differences can lead to unexpected results.

• Features Preprocessing: in the way of the explainability
it is important to analyse the data incorporated into the
dataset and define what will be the data which you will
use in your ML process.

B. Feature Selection

Regarding the feature selection in the pedestrian crossing
prediction task, we got some insights from this work and
cluster them to provide some guidelines which can help to get
favourable results over this task, especially when the target is
to make these systems explainable:

• Group the Features: One feature by itself will not be
enough to identify the pedestrian crossing behaviour. It
is highly recommended to combine two or more features.
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The best strategy implies starting with few features and
adding the other ones progressively.

• Identify the generic Features: There are features which
just can be used for a specific dataset, others that need
some changes into the preprocessing phase and others that
are not dependent from the dataset. So, carefully analyse
the use of these features because, it could affect the cross-
dataset evaluation.

• Features Preprocessing: In order to improve the inter-
pretability and explainability of the pedestrian crossing
action prediction, it is important to analyse each feature
in detail and identify if the feature needs any processing
or if the feature extraction has to consider any variable
which can affect or create noise into the system.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a novel, interpretable and
explainable approach for pedestrian crossing predictor. This
approach is based on a neuro-symbolic model using fuzzy
logic. The experiments addressed some evaluation factors
which allow to define some guidelines and recommendations
regarding the process of data selection and feature selection
over the explainable and interpretable context. Through the
experiments we emphasize that emphasize that the process of
selecting the right dataset, one that is suitable, accurate, and
comprehensive, is indeed a challenging task within the domain
of ML context.

From these insights, it is important to highlight that in the
context of an explainable predictor, having a large amount of
data does not necessarily lead to better results and does not
guarantee improved generalization on its own. Additionally, as
we look for explainable predictions, it is crucial to include a
deep analysis of the videos before using them. Another insight
shows us that including data selection and filtering strategies
is also important with a view to creating meaningful fuzzy
rules.

On the other hand, it is important to mention that the
features to use need to be selected carefully and one feature
by itself could be not enough for getting accurate results; the
features need to be complemented with additional features
that convey more representative information. Likewise, the
divergent representation of these features across datasets may
lead to inconsistencies in prediction performance when the
explainable predictor is applied, therefore, each feature has to
be analyzed and used for each dataset as in an optimal way.

Regarding the use of different features extracted from JAAD
and PIE dataset in an explainable approach, the proximity,
orientation, action and distance are presented as strong features
which can reveal meaningful information about the pedestrian
behaviour.

In the future, we will explore more complex strategies
and approaches to develop an explainable and interpretable
pedestrian crossing action predictor. In addition, we will work
over the features extraction including features which can
encapsulate the pedestrian history by the time.
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