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Abstract: - This paper describes a target detection system on road environments based on Support Vector 
Machine (SVM) and monocular vision. The final goal is to provide car-to-car time gap. The challenge is to use a 
single camera as input, in order to achieve a low cost final system that meets the requirements needed to 
undertake serial production in automotive industry. The basic feature of the detected objects are first located in 
the image using vision and then combined with a SVM-based classifier. An intelligent learning approach is 
proposed in order to better deal with objects variability, illumination conditions, partial occlusions and rotations. 
A large database containing thousands of object examples extracted from real road images has been created for 
learning purposes. The classifier is trained using SVM in order to be able to classify cars and trucks. In addition, 
the vehicle detection system described in this paper provides early detection of passing cars and assigns lane to 
target vehicles. In the paper, we present and discuss the results achieved up to date in real traffic conditions.  
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1   Introduction 
Insufficient distance keeping is a major source of 
rear-end accidents as many drivers find it difficult to 
keep adequate headway distance because it requires 
taking into account both the distance to the vehicle 
ahead and the travelling speed of their vehicle. The 
importance of keeping sufficient headway for 
reduction of accidents is recognized by traffic 
authorities worldwide and is being enforced in an 
increasing number of countries. Monocular vision can 
be used for vehicle detection and range measurement, 
and also to apply lane analysis in order to measure 
road geometry and curvature to determine the Closest 
In-Path Vehicle. The vision system can also detect 
and classify targets ahead of the host vehicle and send 
range and range rate (relative velocity) information to 
the ACC (Adaptive Cruise Control) controller to 
maintain a constant time gap between the host and 
followed vehicles. In such a case, the ACC controller 
automatically adjusts the speed of the host vehicle to 
maintain the desired headway by using throttle 
control and braking, and resumes to the set speed 
when the lane ahead is clear. All these vision-based 
functions can be globally considered as part of an 
Advanced Warning and Adaptive Cruise Control 
System. In this paper, we propose a monocular vision 
system for vehicle detection mainly intended for 
Adaptive Cruise Control functionality, although the 
results of this system can also be used for Headway 
Monitoring Warning and Emergency Braking. 

     Some previous developments use available 
sensing methods such as radar [9], stereo vision or a 
combination of stereo-vision and laser [6]. In [1] the 
authors propose the fusion of stereo-vision and radar 
for creating a hybrid velocity adaptive control system 
called HACC. Only a few works deal with the 
problem of monocular vehicle detection using 
symmetry and colour features [2] or pattern 
recognition techniques [8], including Support Vector 
Machines (SVM) [7]. In [2] the authors propose the 
use of horizontal edges and vertical symmetry 
together with a shape-dependent process for 
removing objects that are too small or too big in the 
image plane. In [5] the authors propose the use of a 
geometrical model for vehicle characterization using 
evolutionary algorithms, assigning different 
geometrical models depending on the vehicle lane. In  
[3] the authors develop an algorithm that provides 
night time vehicle detection by combination with 
Lane Departure Warning (LDW) in one-way roads 
for reducing false positive detections. Let us remark 
that the pattern recognition techniques used by all 
these systems for vehicle recognition can also be used 
for other eSafety applications such as Pedestrian 
Detection because of their generalization capability 
      In the current work, the searching space in the 
image plane is reduced in an intelligent manner in 
order to increase the performance of the vehicle 
detection module. Accordingly, road lane markings 
are detected and used as the guidelines that drive the 



vehicle searching process. The area contained by the 
limits of the lanes is scanned in order to find vehicle 
candidates that are passed on to the vehicle 
recognition module. This helps reduce the rate of 
false positive detections. In case that no lane 
markings are detected, a basic area of interest is used 
instead covering the front part ahead of the ego-
vehicle. The presence of collections of horizontal 
edges together with vertical symmetries triggers the 
attention mechanism.  
 
 
2   Candidates Selection 
An attention mechanism is necessary in order to filter 
out inappropriate candidate windows based on the 
lack of distinctive features, such as horizontal edges 
and vertical symmetrical structures, which are 
essential characteristics of road vehicles. This has the 
positive effect of decreasing both the total 
computation time and the rate of false positive 
detections. Each road lane is sequentially scanned, 
from the bottom to the horizon line of the image 
looking for collections of horizontal edges that might 
represent a potential vehicle. The scanned lines are 
associated in groups of three. For each group, a 
horizontality coefficient is computed as the ratio of 
connected horizontal edge points normalized by the 
size of the area being analysed. The resulting 
coefficient is used together with a symmetry analysis 
in order to trigger the attention mechanism. Apart 
from the detected road lanes provided by a Lane 
Departure Warning System (LDWS) developed by 
the authors in previous works [7], additional virtual 
lanes have been considered so as to cope with 
situations in which a vehicle is located between two 
lanes (for example, if it is performing a change lane 
manoeuvre). Virtual lanes provide the necessary 
overlap between lanes, avoiding both misdetections 
and double detections caused by the two halves of a 
vehicle being separately detected as two potential 
vehicles. A virtual lane is located to provide overlap 
between two adjoining lanes.  
    An adaptive thresholding process is implemented in 
order to obtain robust edges from the road images. 
This adaptive process is based on an iterative 
algorithm that gradually increases the contrast of the 
image, and compares the number of edges obtained in 
the contrast increased image with the number of 
edges obtained in the actual image. If the number of 
edges in the actual image is higher than in the 
contrast increased image the algorithm stops. 
Otherwise, the contrast is gradually increased and the 
process resumed. After thresholding, horizontal edges 
in the scanned regions given by the Lane Departure 
Warning (LDW) system are examined to detect the 

rear part of potential vehicles. In order to decide if the 
collection of horizontal lines represents a possible 
vehicle candidate, its width is compared to that of an 
ideal car. The ideal car width is obtained for each 
vertical coordinate using the camera pinhole model. 
To calculate the Z distance, the pinhole model is used 
again. The origin of the vehicle coordinate system is 
located at the central point of the camera lens. The XV 
and YV coordinates of the vehicle coordinate system 
are parallel to the image plane and the ZV axis is 
perpendicular to the plane formed by the XV and YV 
axes. A vehicle at a look-ahead distance Z from the 
camera will be projected into the image plane at a 
vertical and horizontal coordinates (u, v) respectively. 
The vertical road mapping geometry following this 
nomenclature is depicted in figure 1. The vertical 
model considers the flat terrain assumption and uses 
the following parameters: 
 
I: Image plane 
Z: look-ahead distance for planar ground (m) 
hCAM: elevation of the camera above the ground (m) 
Pitch: relative camera pitch angle (rad) 
θZ: incident angle of the preceding vehicle’s contact-
to-asphalt point relative to vehicle pitch axis (rad) 
v: vertical image coordinate (pixels) 
HEIGHT: vertical size of the CCD (pixels) 
Fv: vertical focal length (pixels) 
Fu: horizontal focal length (pixels) 
kv: vertical scaling factor for the camera (pixels/mm) 
 

 
Figure 1. Vertical road mapping geometry. 

 
According to figure 1, the vertical mapping geometry 
is mainly determined by the camera elevation hCAM 
above the local ground plane as well as the pitch 
angle. The longitudinal axis of the vehicle is assumed 
to be always tangential to the road at the vehicle 
centre of gravity (cg). For each image scan line at v, 
there corresponds a pitch angle relative to the local 
tangential plane given by (1): 
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Based on this, the planar look-ahead distance 
corresponding to v, is obtained as: 
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Applying a coordinate change due to the fact that the 
image origin in our case is on the top of the image 
instead of in the centre, the new vertical coordinate 
v(top) is given by: 
  

HEIGHTcentrevtopv −= )(2)(                             (3) 
 
In (4), the vertical scaling factor of the camera is 
introduced in the distance length parameter: 
 
 vv KfF =      (4) 
 
The equation for computing the look-ahead distance 
Z becomes: 
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Once the car width is computed at the current frame it 
is compared to the collection of horizontal lines 
found after the thresholding analysis. If they are 
similar to some extent defined by an empirical value, 
a square area above the collection of horizontal lines, 
denoted as candidate ROI, is considered for further 
analysis. The aim is to compute the entropy of the 
candidate ROI and its vertical symmetry. Only those 
regions containing enough entropy and symmetry are 
identified as potential vehicles. Figure 2 depicts two 
examples of the detection step, while figure 3 shows 
a detailed block diagram of the detection procedure. 
 
 

Figure 2. Examples of potential candidates detected by the 
attention mechanism (vehicles and non-vehicles). 
 
 

 
Figure 3. Block diagram of the vehicle detection 
mechanism. 
 
Accurate detection of the wheel-to-road contact point 
of the preceding vehicle is essential for assuring 
maximum precision of the host-to-vehicle estimated 
distance. Thus, the error committed in estimating the 
host-to-vehicle distance Zerr due to a vehicle detection 
error of n pixels in the image plane is given by: 
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where v is the vertical coordinate of the wheel-to-
road contact point in the image plane, Z is the 
estimated host-to-vehicle distance, and hCAM 
represents the camera height (as previously defined). 
Considering an error of one pixel n=1 and FvhCAM >> 
nZ, Zerr becomes: 
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For example, for a 640x480 image, a focal length of 
740 pixels, and a camera height hCAM=1.2m, an error 
of 1 pixel (n=1) becomes a relative 5% error at a 
distance: 
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On the other hand, the error at 90m is 10%. These 
values are more than enough for the ACC function. 
What is really important is the measurement of 
relative host-to-vehicle velocity. Relative velocity Rv 
is computed using the following equation: 
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ZRv
∆
∆

=                                                                 (9) 

 
Based on the scale change s of detected objects in the 
image plane, the optimal value of )t that minimizes 
the estimation noise can be calculated. Let W denote 
the width (in meters) of the preceding vehicle, w and 
w’ the width of the preceding vehicle in the image 
plane when it is located at distances Z and Z’, 
respectively, with regard to the host vehicle. The 
scale change s can be defined as:  
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Finally, the estimated relative velocity can be 
computed as follows: 
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3   Vehicle Recognition and Tracking 
Detected candidates are classified as vehicles or non-
vehicles depending on features obtained from the 
vehicle ROI using Support Vector Machines (SVM). 
Support vector machines (SVMs) are a set of related 
supervised learning methods used for classification 
and pattern recognition. One special property of 
SVMs is that they simultaneously minimize the 
empirical classification error and maximize the 
geometric margin. Hence they are also known as 
maximum margin classifiers. Support vector 
machines map input vectors to a higher dimensional 
space where a maximal separating hyperplane is 
constructed, by maximizing the distance between 
both classes. An assumption is made that the larger 
the margin or distance between these parallel 
hyperplanes the better the generalization error of the 
classifier will be. The output of the SVM, D , is 
simply the signed distance of the test instance from 
the separating hyperplane. This output indicates 
whether the analyzed object corresponds to a vehicle 
(+1, in theory) or not (-1, in theory) and can be used 
as a threshold for separating them. Two aspects are 
essential in the deployment of SVM classifiers: the 
training strategy and the classifier structure. 
 

3.1 Training Strategy 
The first step in the design of the training strategy is 
to create representative databases for learning and 
testing. The following considerations must be taken 
into account when creating the training and test sets. 
 
- The ratio between positive (vehicles) and 

negative (others) samples has to be set to an 
appropriate value. A very large number of 
positive samples in the training set may lead to a 
high percentage of false positive detections 
during on-line classification. On the contrary, a 
very large number of negative samples produce 
misslearning. 

- The size of the database is a crucial factor to take 
care of. As long as the training data represent the 
problem well, the larger the size of the training 
set the better for generalization purposes.  

- A sufficiently representative test set must be 
created for verification. The content of the test set 
has similar characteristics to those of the training 
sets in terms of variability and ratio of 
positive/negative samples. 

 
3.2 Classifier Structure 
An input vector for the classifier was defined. This 
vector is composed of different parameters which are 
computed for all candidates and define the state 
vector for the SVM. Those parameters are local 
histograms of oriented gradients (HOG) [4]. The aim 
of this method is to describe an image by a set of 
local histograms which count occurrences of gradient 
orientation in a local part of the image (the selected 
candidate ROI). As a general overview, the algorithm 
is composed of the following steps: 
 
- Parameters of the detected objects (HOG) are 

computed and used as inputs (SVM Feature 
Vector) to the SVM classifier.  

- Once the parameters vector is computed, the 
SVM process analyzes this vector and returns a 
value which is simply the signed distance of the 
test instance from the separating hyperplane. 

 
3.3 Vehicle Tracking 
After detecting consecutively an object a predefined 
number of times (empirically set to 3 in this work), 
tracking is implemented using Kalman filtering 
techniques. The purpose of the Kalman filtering is to 
obtain a more stable position of the detected vehicles. 
Besides, oscillations in vehicles position due to the 
unevenness of the road makes y coordinate of the 
detected vehicles change several pixels up or down. 
This effect makes the distance detection unstable, so 
a Kalman filter is necessary for minimizing these 



kinds of oscillations. As a future idea, even though an 
image correction and filtering can be done, it would 
be much more efficient to go through this problem by 
introducing an oscillation sensor in the car.  
 
 
4   Implementation and Results 
The system was implemented on a PC Pentium IV at 
2.4 GHz onboard a Citroën C4 and tested in real 
traffic conditions using a 640x320 CMOS camera. 
The training database contains 10.000 representative 
samples while the test set has 3.000 samples. In both 
cases, a positive/negative ratio of 1:2 has been 
observed. The size of the database (10.000 samples) 
represents a crucial factor to take care of. To obtain a 
sufficiently representative set we have taken cars and 
trucks as positive samples, and crash barriers, median 
strip, pieces of road, etc, like negative samples. The 
samples have been taken in different weather 
conditions (with and without rain, shadows, etc). The 
content of the test set has similar characteristics to 
those of the training set in terms of variability and 
ratio of positive/negative samples. The size of the test 
set (3.000 samples) is appropriate for verification of 
the overall system. To create the samples sets, we 
have developed a tool called “ACC Database”. This 
tool represents an extended option of the main 
software used for vehicle detection. The tool allows 
entering the candidates extracted by the car detection 
system as positive or negative samples in the 
database. Using the ACC Database tool an intensive 
training stage was accomplished. Table 1 shows the 
number of samples obtained for training and testing. 
 

 
Figure 4. Receiver Operating Characteristic Curve (ROC 
Curve). 
 

Figure 4 depicts the Receiver Operating 
Characteristic (ROC) Curve. Table 2 provides a 
summary of statistics concerning global system 
performance. The table shows the results achieved 
using the previously described database containing 
13.000 samples. The average processing time per 
frame (Tpf) is given in ms, as well as the number of 
detected vehicles, missing vehicles and number of 
false alarms. As can be observed from table 2, not 
only the detection rate and false alarm rate are 
provided, but also the reasons that cause it. The 
system yields a global Detection Rate of 90.32% with 
1 False Alarm. Miss detections mainly occur with 
motorcycles and trucks under heavy rain. 
Motorcycles miss detections can be solved by 
incorporating a sufficient number of motorcycle 
images in the database. For this purpose, the 
candidate selection mechanism should be modified in 
order to raise candidates with the shape and aspect of 
motorcycles, not only cars, trucks and buses. Indeed, 
if the effect of miss-detected motorcycles is 
neglected, a Detection Rate of 96.77% is achieved for 
cars, trucks and buses. In order to diminish the 
number of false alarms due to road artefacts, such as 
road fences, these types of elements should be 
included in the database as negative samples. 
Although these elements are already included in the 
current database, it should be further enlarged and 
enriched until proper generalization will be achieved. 
 
 
5   Conclusions  
We have developed and implemented a vehicle 
detection system based on Support Vector Machine 
(SVM) and monocular vision with the objective of 
providing car-to-car time gap measurement for 
Adaptive Cruise Control (ACC) applications in the 
framework of Intelligent Transportation Systems 
(ITS). Vehicle candidates are raised using an 
attention mechanism based on horizontal edges, 
vertical symmetry and entropy. The detected objects 
are passed on to a SVM-based classifier. After 
classification, detected vehicles are tracked using 
Kalman filtering. A large database containing 
thousands of vehicle examples extracted from real 
road images has been created for learning purposes. 
The classifier is trained using SVM in order to be 
able to classify cars and trucks. In addition, the 
vehicle detection system described in this paper 
provides early detection of passing cars and assigns 
lane to target vehicles based on the use of a Lane 
Departure Warning System (LDWS). After 
assessment of the practical results achieved in our 
experiments, the following general conclusions can 
be summarized:  



 
- The global performance of the monocular 

daytime ACC developed and described in this 
paper yields a Detection Rate above 90% for a 
False Alarm Rate around 1%.  

- The performance of ACC is significantly 
increased by building on the output provided by 
the LDWS function.  

- The presence of large shadows on the asphalt due 
to vehicles circulating along the road produces 
negative effects on the candidate selection 
mechanism, yielding to inaccuracy in measuring 
the distance to the vehicles.  
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